How proteins talk to each other: Caspase-3 cleaves in unforeseen ways

Sep 21, 2009

Investigators at Burnham Institute for Medical Research have identified novel cleavage sites for the enzyme caspase-3 (an enzyme that proteolytically cleaves target proteins). Using an advanced proteomic technique called N-terminomics, Guy Salvesen, Ph.D., professor and director of the Apoptosis and Cell Death Research program of Burnham's NCI-designated Cancer Center, and colleagues determined the cleavage sites on target proteins and found, contrary to previous understanding, that caspase-3 targets α-helices as well as unstructured loops. In addition, researchers found that caspase-3 and the substrates it binds to co-evolved.

The paper was published on September 20 in the journal Nature Structural & Molecular Biology.

Prior to this study, scientists believed that proteases primarily cleave in unstructured loops, unstable parts of proteins that are readily accessible. The discovery that caspase-3 also cleaves α-helices contradicts a current dogma and offers new insights into protein signaling pathways.

"This was a big surprise because there shouldn't be anything for a protease to grab onto in a helix," said Dr. Salvesen. "We found that the basic concept that they don't cleave to helices is wrong. However, though we've found that proteases can cleave helices, we don't believe that's their biological function."

In addition to determining cleavage sites, the team also determined which interactions were "biologically significant." In other words which cleavages altered the function of the and which ones had little impact.

The team tested the human caspase-3 and the Staphylococcal protease glutamyl endopeptidase (GluC) against the Escherichia coli (E. coli) proteosome. In a second set, the human caspase substrate was challenged with human caspase-3 . The researchers found cleavage sites using N-terminal proteomics (N-terminomics), in which cleaved substrates are tagged at an exposed edge (N-terminal) and analyzed though mass spectrometry. The data from these assays were then matched against lists of substrates in the Protein Data Bank. Notably, caspase-3 did not cleave E. coli proteins as effectively as it did human proteins. However, when hybrid human/E. coli proteins were constructed, cleavage was greatly improved, leading researchers to conclude that caspase-3 co-evolved with its human substrates.

Because they alter the functions of other proteins, proteases like caspase-3 are critical to cell signaling. Understanding how and where they interface with target proteins enhances our ability to understand the progress of diseases.

Source: Burnham Institute (news : web)

Explore further: Scientists throw light on the mechanism of plants' ticking clock

add to favorites email to friend print save as pdf

Related Stories

Protein that promotes cancer cell growth identified

Jul 24, 2009

Scientists at Burnham Institute for Medical Research (Burnham) have found that the Caspase-8 protein, long known to play a major role in promoting programmed cell death (apoptosis), helps relay signals that can cause cancer ...

Enzyme plays key role in cell fate

Jun 04, 2008

The road to death or differentiation follows a similar course in embryonic stem cells, said researchers at Baylor College of Medicine in Houston in a report that appears online today in the journal Cell Stem Cell.

Immune cells kill foes by disrupting mitochondria 2 ways

May 15, 2008

When killer T cells of the immune system encounter virus-infected or cancer cells, they unload a lethal mix of toxic proteins that trigger the target cells to self-destruct. A new study shows T cells can initiate cellular ...

New cell death pathway involved in sperm development

Sep 18, 2007

Heavy and bulky sperm would not be good swimmers. To trim down, sperm rely on cell death proteins called caspases, which facilitate the removal of unwanted cellular material and radically remodel these cells ...

Cells re-energize to come back from the brink of death

Jun 01, 2007

The discovery of how some abnormal cells can avoid a biochemical program of self-destruction by increasing their energy level and repairing the damage, is giving investigators at St. Jude Children's Research Hospital insights ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0