Ganymede makes big impression on Jupiter's auroral lightshows (w/ Video)

Sep 18, 2009
Last frame of movie showing the northern auroral region of Jupiter. Actual duration of sequence ~30 minutes. The bulk of the aurora rotates with the planet. Credit: Grodent/HST Team

(PhysOrg.com) -- Studies of features in Jupiter’s spectacular and rapidly changing aurorae have given new insights into the complex electromagnetic interactions between the giant planet and two of its innermost moons.

As Ganymede and Io Jupiter, they interact with regions of and generate that are projected along Jupiter’s lines towards Jupiter’s poles where they cause auroral bright spots. Scientists from the University of Ličge in Belgium have used thousands of images taken by the Hubble Space Telescope in ultraviolet wavelengths to monitor these auroral features in unprecedented detail.

“Each of these auroral structures is telling an ongoing story about vast transfers of energy taking place far away from the planet.  By analysing the exact locations of these features and how their shape and brightness changes as Io and Ganymede move in their orbit around Jupiter, we have created the most detailed picture to date of how Jupiter and these moons are electromagnetically interconnected,” said Dr Denis Grodent, who presented results at the European Planetary Science Congress in Potsdam, Germany, on Thursday 17 September.

This video is not supported by your browser at this time.
Movie illustrating the Io-Jupiter interaction. The yellow doughnut is the Io plasma torus, it is tilted and rotates like the magnetic field of Jupiter. The blue tubes represent the Alfvén waves, more correctly the Alfvén wings, carrying the current leading to the auroral fooprint of Io. The red tubes are electron beams giving rise to secondary spots. Their relative position is changing according to the location of Io into the plasma torus. This movie was designed by Bertrand Bonfond, LPAP, Université de Ličge.

Uniquely amongst Jupiter’s moons, Ganymede has a strong enough magnetic field to carve a protective magnetic bubble within Jupiter’s powerful magnetosphere.  Analysis of the Hubble images by Grodent and his colleagues has allowed them to measure accurately the size of the Ganymede auroral footprint for the first time. They have found that  it is too big to be a simple projection of Ganymede’s cross-section.  However, using a three-dimensional computer model to map the footprint back along the field lines, the team has found that it corresponds well with the diameter of Ganymede’s mini-magnetosphere.

In addition, the sequences of Hubble images revealed unexpected brightness variations of Ganymede’s auroral footprint at three different timescales: 100 seconds, 10 to 40 minutes, and 5 hours.

“Each of these timescales appears to refer to a specific aspect of the Ganymede-Jupiter interaction and allows us to identify possible actors of this interaction.  The 5 hour variation appears to be linked to the rotational period of Jupiter’s magnetic field and the movement of Ganymede through the tilted plasma sheet that surrounds the planet. The 10-40 minute variations could be due to sudden changes in energy due to plasma being injected into the system and the 100 second pulses may be linked to bursts of magnetic energy being suddenly released when Jupiter and Ganymede’s magnetic field lines connect. However, we are not sure at this stage,” said Dr Grodent.

The team has also mapped the positions of all possible locations of the auroral footprint of Jupiter’s volcanically active moon, Io, with unprecedented accuracy.  Io’s footprint consists of a series of spots and a long tail that swirls out about 30 000 km in the direction of the planet’s rotation.  The angle of observation in some of the Hubble images has allowed the team to measure the altitude of the tail for the first time with accuracy.

“We found that the tail is at an altitude of approximately 900 km above ’s cloud tops. Interestingly, although the brightness of the tail decreases as it gets further away from the main spot, the altitude remains relatively constant. We also saw spectral absorption indicating that methane is present, which is unexpected at such a high altitude,” said Dr Bertrand Bonfond.

Io’s footprint arises as a result of the moon’s motion through a doughnut-shaped torus of charged particles, which accumulates along Io’s orbit from material ejected by its volcanoes.  In this flow of particles Io acts as a boulder in a stream, generating powerful waves that propagate towards Jupiter's poles. These waves have the special property to project electrons in both directions along the magnetic field lines and when these electrons finally hit Jupiter's atmosphere they create aurora in the form of luminous spots.  In addition, Io drags on the plasma, briefly slowing it down, and when the plasma is reaccelerated to normal speed it generates electric currents that form the tail.

The team’s analysis shows that the charged particles that generate Io’s auroral features have a wide range of energies, meaning that some electrons penetrate deep into the atmosphere while others lose most of their energy in the upper atmosphere.

Provided by European Planetary Science Congress

Explore further: Image: Chandra's view of the Tycho Supernova remnant

add to favorites email to friend print save as pdf

Related Stories

Novel spots found on Jupiter

Mar 17, 2008

Scientists have observed unexpected luminous spots on Jupiter caused by its moon Io. Besides displaying the most spectacular volcanic activity in the solar system, Io causes auroras on its mother planet that ...

Scientists Make Image, Movie of a Jupiter Moon Setting

Dec 18, 2008

(PhysOrg.com) -- Jupiter's largest moon, Ganymede, is seen just before it slips behind its giant planet in a new color image and a movie made by a University of Arizona scientist from images taken by NASA's ...

Chandra probes high-voltage auroras on Jupiter

Mar 02, 2005

Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's ...

Chandra examines Jupiter during new horizons approach

Mar 01, 2007

On February 28, 2007, NASA's New Horizons spacecraft made its closest approach to Jupiter on its ultimate journey to Pluto. This flyby gave scientists a unique opportunity to study Jupiter using the package ...

Recommended for you

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

Satellite galaxies put astronomers in a spin

Jul 24, 2014

An international team of researchers, led by astronomers at the Observatoire Astronomique de Strasbourg (CNRS/Université de Strasbourg), has studied 380 galaxies and shown that their small satellite galaxies almost always ...

Video: The diversity of habitable zones and the planets

Jul 24, 2014

The field of exoplanets has rapidly expanded from the exclusivity of exoplanet detection to include exoplanet characterization. A key step towards this characterization is the determination of which planets occupy the Habitable ...

User comments : 0