Researchers make rare meteorite find using new camera network in Australian desert

Sep 17, 2009
This is Bunburra Rockhole, the meteorite, at the discovery site. Credit: Imperial College London

(PhysOrg.com) -- Researchers have discovered an unusual kind of meteorite in the Western Australian desert and have uncovered where in the Solar System it came from, in a very rare finding published today in the journal Science.

Meteorites are the only surviving physical record of the formation of our and by analysing them researchers can glean valuable information about the conditions that existed when the early Solar System was being formed. However, information about where individual meteorites originated, and how they were moving around the Solar System prior to falling to Earth, is available for only a dozen of around 1100 documented falls over the past two hundred years.

Dr Phil Bland, the lead author of today's study from the Department of Earth Science and Engineering at Imperial College London, said: "We are incredibly excited about our new finding. Meteorites are the most analysed rocks on Earth but it's really rare for us to be able to tell where they came from. Trying to interpret what happened in the early Solar System without knowing where meteorites are from is like trying to interpret the geology of Britain from random rocks dumped in your back yard."

The new meteorite, which is about the size of cricket ball, is the first to be retrieved since researchers from Imperial College London, Ondrejov Observatory in the Czech Republic, and the Western Australian Museum, set up a trial network of cameras in the Nullarbor Desert in Western Australia in 2006.

This is an all-sky image from the easternmost station in the Desert Fireball Network showing the track of the fireball on the left. Credit: Imperial College London

The researchers aim to use these cameras to find new meteorites, and work out where in the Solar System they came from, by tracking the fireballs that they form in the sky. The new meteorite was found on the first day of searching using the new network, by the first search expedition, within 100m of the predicted site of the fall. This is the first time a meteorite fall has been predicted using only the data from dedicated instruments.

The meteorite appears to have been following an unusual orbit, or path around the Sun, prior to falling to Earth in July 2007, according to the researchers' calculations. The team believes that it started out as part of an asteroid in the innermost main asteroid belt between Mars and Jupiter. It then gradually evolved into an orbit around the Sun that was very similar to Earth's. The other meteorites that researchers have data for follow orbits that take them back, deep into the main asteroid belt.

The new meteorite is also unusual because it is composed of a rare type of basaltic igneous rock. The researchers say that its composition, together with the data about where the meteorite comes from, fits with a recent theory about how the building blocks for the terrestrial planets were formed. This theory suggests that the igneous parent asteroids for meteorites like today's formed deep in the inner Solar System, before being scattered out into the main asteroid belt. Asteroids are widely believed to be the building blocks for planets like the Earth so today's finding provides another clue about the origins of the Solar System.

The researchers are hopeful that their new desert network could yield many more findings, following the success of their first meteorite search.

Dr Bland added: "We're not the first team to set up a network of cameras to track fireballs, but other teams have encountered problems because meteorites are small rocks and they're hard to find in vegetated areas. Our solution was quite simple - build a fireball network in a place where it's easy to find them. The Nullarbour Desert is ideal because there's very little vegetation and dark rocks show up really easily on the light desert plain.

"It was amazing to find a meteorite that we could track back to its origin in the on our first expedition using our small trial network. We're cautiously optimistic that this find could be the first of many and if that happens, each find may give us more clues about how the Solar System began," said Dr Bland.

The researchers' network of cameras takes a single time-lapse picture every night to record any fireballs in the sky. When a meteorite falls, researchers can then use complex calculations to uncover what orbit the meteorite was following and where the meteorite is likely to have landed, so that they can retrieve it.

More information: "An anomalous basaltic meteorite from the innermost main belt" Science, 17 September 2009

Provided by Imperial College London (news : web)

Explore further: Lunar explorers will walk at higher speeds than thought

add to favorites email to friend print save as pdf

Related Stories

Discovery of the source of the most common meteorites

Jul 10, 2008

Astronomy & Astrophysics is publishing the first discovery by T. Mothé-Diniz (Brazil) and D. Nesvorný (USA) of asteroids with a spectrum similar to that of ordinary chondrites, the meteoritic material that m ...

University of Western Ontario cameras capture 'fireball'

Oct 24, 2008

For the second time this year, The University of Western Ontario Meteor Group has captured incredibly rare video footage of a meteor falling to Earth. The team of astronomers suspects the fireball dropped meteorites in a ...

Manitoba meteorite hunter scores again

Jul 18, 2005

A new meteorite identified by the Prairie Meteorite Search is posing a mystery about why so many meteorites have been found in eastern Manitoba, and has set a new Canadian record for the man behind the latest ...

Asteroid Impact Helps Trace Meteorite Origins

Mar 25, 2009

(PhysOrg.com) -- The car-sized asteroid that exploded above the Nubian Desert last October was small compared to the dinosaur-killing, civilization-ending objects that still orbit the sun. But that didn't ...

One-of-a-kind meteorite unveiled

Apr 22, 2006

The depths of space are much closer to home following the University of Alberta's acquisition of a meteorite that is the only one of its kind known to exist on Earth! What makes it so rare? The meteorite is 'pristine' – ...

Recommended for you

Lunar explorers will walk at higher speeds than thought

11 hours ago

Anyone who has seen the movies of Neil Armstrong's first bounding steps on the moon couldn't fail to be intrigued by his unusual walking style. But, contrary to popular belief, the astronaut's peculiar walk ...

Space: The final frontier... open to the public

13 hours ago

Historically, spaceflight has been reserved for the very healthy. Astronauts are selected for their ability to meet the highest physical and psychological standards to prepare them for any unknown challenges. However, with ...

NASA releases IRIS footage of X-class flare (w/ Video)

13 hours ago

On Sept. 10, 2014, NASA's newest solar observatory, the Interface Region Imaging Spectrograph, or IRIS, mission joined other telescopes to witness an X-class flare – an example of one of the strongest solar flares—on ...

NASA's Maven spacecraft reaches Mars this weekend

13 hours ago

Mars, get ready for another visitor or two. This weekend, NASA's Maven spacecraft will reach the red planet following a 10-month journey spanning 442 million miles (711 million kilometers).

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

vivcollins
Sep 17, 2009
This comment has been removed by a moderator.
superhuman
3.7 / 5 (3) Sep 18, 2009
Meteorites are the only surviving physical record of the formation of our Solar System

Yes, because planets, moons and the Sun are clearly not physical and contain no record whatsoever of their formation.
RayCherry
not rated yet Sep 18, 2009
researchers from Imperial College London, Ondrejov Observatory in the Czech Republic, and the Western Australian Museum, set up a trial network of cameras in the Nullarbor Desert in Western Australia in 2006

Congratulations to all concerned.

Good to see the academic community getting to the new meteorites before the profiteering hunters. The money spent on such sky-watching equipment has paid itself off with this one find.

Does the camera network have a project name?

Would be interesting to see a similar network established on the Antarctic region resently studied as a possible new telescope site.
alexxx
not rated yet Sep 18, 2009
Meteorites are the only surviving physical record of the formation of our Solar System

Yes, because planets, moons and the Sun are clearly not physical and contain no record whatsoever of their formation.


I think they meant 'on earth'
SincerelyTwo
not rated yet Sep 19, 2009
Why did this thing not make the slightest dent in the ground? It had the energy to make it through the atmosphere intact, at least that much of it, but no damage to the ground? Just curious...