Tiny Bacteria Secret to Cicada's Success

Sep 14, 2009 by Lily Whiteman
The cicada Diceroprocta semicincta sings its zzsssstttt song during Tucson's hot summer days. (Credit: Adam Fleishman/cometmoth.com)

(PhysOrg.com) -- John McCutcheon remembers the song of the cicada - the loudest song in the insect world - as the sound track to countless summer hours spent playing outside his childhood home in Rockford, Ill.

So when McCutcheon, a molecular biologist at the University of Arizona, heard the zzsssstttt of cicadas singing outside of his Tucson office, he again took notice - but this time as a curious scientist rather than as a playful boy.

In collaboration with UA Regents' Professor of ecology and Nancy Moran, McCutcheon began investigating the relationship between cicadas and the symbiotic bacteria that live inside them.

"This project provides an example of how interesting science may be happening right outside your front door," said McCutcheon, a postdoctoral research associate at the UA's Center for Insect Science.

He collected local cicadas, Diceroprocta semicincta, some from mesquite trees growing right outside his office in the Life Sciences South building.

McCutcheon admires cicadas for their success. "Certain cicada species occur in overwhelming numbers," he said. "And they are estimated to be the most abundant herbivores in terms of both their total weight and the total number of individuals in some North American forests."

The noisy insects achieve such success despite their reliance on a nutrient-poor diet. Before emerging en masse at regular intervals, cicadas spend most of their lives (from two to 17 years) underground feeding solely on the sap of plant roots. Sap is the most nutrient-poor and unbalanced part of plants.

The juvenile cicadas supplement their diet by maintaining a symbiotic relationship with two species of specialized bacteria that live inside specialized cells inside the insects. The cicadas provide food and shelter for the bacteria. In turn, the bacteria produce essential nutrients, primarily amino acids, that are not present in plant sap.

Most sap-sucking insects studied so far have such bacterial symbionts. Although the bacterial species vary somewhat from one species of insect to the next, many of the bacteria have similar features.

However, McCutcheon, Moran and UA undergraduate Bradon McDonald found an unusual bacterial symbiont living inside cicadas.
The symbiont, Hodgkinia cicadicola, has the smallest collection of genes ever found for a cellular organism.

McCutcheon, McDonald and Moran published their most recent findings about cicadas' in the Sept. 8 issue of the Proceedings of the National Academy of Science. Some of their earlier findings are published in the July 17, 2009, issue of PLoS Genetics.

Besides having a tiny number of genes, Hodgkinia's genome is unusual in other ways, the researchers found. The bacteria's DNA has a high proportion of guanine and cytosine - two of the four chemical bases of DNA. Scientists previously thought that the smaller a bacterial genome, the less guanine and cytosine its DNA would have.

"We don't yet understand the significance of this exception," McCutcheon said. "But it goes against everything we thought we understood about the relationship between bacterial genome size and guanine and cytosine contents."

In addition, the code Hodgkinia uses to translate gene sequences into proteins is different than the code used by most other organisms.

Hodgkinia can also make the complex vitamin B12, which is why McCutcheon named the bacteria after Dorothy Crowfoot Hodgkin, the x-ray crystallographer who won the Nobel Prize for figuring out vitamin B12's structure.

The relationship between sap-sucking and some of their symbionts can be traced back more than 200 million years, he said.

"These incredibly small genomes are beginning to blur the distinction between autonomous life and organelles," McCutcheon said.

Organelles are specialized units within cells. The energy-producing organelles, chloroplasts and mitochondria, are thought to have originally been bacteria that started living within other single-celled organisms.

"Some chloroplasts have more genes than Hodgkinia," he said.

"The next step for this project is trying to understand how these live with so few genes," McCutcheon said.

Provided by University of Arizona (news : web)

Explore further: The malaria pathogen's cellular skeleton under a super-microscope

add to favorites email to friend print save as pdf

Related Stories

Researchers Find Smallest Cellular Genome

Oct 12, 2006

The smallest collection of genes ever found for a cellular organism comes from tiny symbiotic bacteria that live inside special cells inside a small insect.

Why some aphids can't stand the heat

Apr 19, 2007

For pea aphids, the ability to go forth and multiply can depend on a single gene, according to new research. An overheated aphid with a mutation in that gene can't reproduce.

Recommended for you

For resetting circadian rhythms, neural cooperation is key

18 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

Rapid and accurate mRNA detection in plant tissues

19 hours ago

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

For cells, internal stress leads to unique shapes

Apr 16, 2014

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

User comments : 0

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...