Designing probiotics that ambush gut pathogens

Sep 08, 2009

Researchers in Australia are developing diversionary tactics to fool disease-causing bacteria in the gut. Many bacteria, including those responsible for major gut infections, such as cholera, produce toxins that damage human tissues when they bind to complex sugar receptors displayed on the surface of cells in the host's intestine.

At the Society for General Microbiology's meeting at Heriot-Watt University, Edinburgh, today (8 September), Professor James Paton and colleagues from the University of Adelaide explained how they had added molecular mimics of these host onto the surface of harmless capable of surviving in the human gut. If given during an infection caused by a toxin-producing bacterium, these "receptor-mimic probiotics" will bind the toxins in the gut very strongly, thereby preventing the toxins from interacting with receptors on host and causing disease.

Effective vaccines are not yet available for many diarrhoeal diseases; and trying to control or treat these diseases with antibiotics can lead to the development of drug-resistance. One advantage of this approach to treatment is that the are unlikely to develop a resistance to it, as that would destroy the basic mechanism by which they cause disease.

A further advantage is that the receptor-mimic bacteria bind toxins more strongly than previous technologies in which synthetic receptors were displayed on inert silica particles. They are also more cost effective, as the bacteria can be grown cheaply in large-scale fermenters.

"We initially developed this technology to prevent disease caused by strains of E. coli bacteria that produce Shiga toxin. These include the infamous E. coli O157 strain, which causes outbreaks of severe bloody diarrhoea and the potentially fatal haemolytic uraemic syndrome. Our prototype receptor mimic probiotic provided 100% protection against otherwise fatal E. coli disease in an animal model." said Professor Paton, "We have also developed similar receptor mimic probiotics that are capable of preventing cholera and travellers' diarrhoea. As well as being able to treat disease, these probiotics could be given to vulnerable populations following natural disasters to help prevent outbreaks of diseases like cholera".

Source: Society for General Microbiology

Explore further: How plant cell compartments change with cell growth

add to favorites email to friend print save as pdf

Related Stories

Viruses can turn harmless E. coli dangerous

Apr 16, 2009

For her doctorate, Camilla Sekse studied how viral DNA can be transmitted from pathogenic to non-pathogenic E. coli. Viruses that infect bacteria in this way are called bacteriophages. Her findings reveal ...

How probiotics can prevent disease

Apr 02, 2009

Using probiotics successfully against a number of animal diseases has helped scientists from University College Cork, Ireland to understand some of the ways in which they work, which could lead to them using probiotics to ...

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Bees disease -- 1 step closer to finding a cure

May 02, 2008

Scientists in Germany have discovered a new mechanism of infection for the most fatal bee disease. American Foulbrood (AFB) is the only infectious disease which can kill entire colonies of bees. Every year, this notifiable ...

Recommended for you

How plant cell compartments change with cell growth

14 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

14 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

15 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

15 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0