Tumors Feel the Deadly Sting of Nanobees

Aug 28, 2009

When bees sting, they pump into their victims a peptide toxin called melittin that destroys cell membranes. Now, by encapsulating this extremely potent molecule within a nanoparticle, researchers at the Washington University School of Medicine in St. Louis have created a potential new type of anticancer therapy with the potential to target a wide range of tumors. This work was reported in the Journal of Clinical Investigation.

Samuel Wickline, M.D., principal investigator of the Siteman Center of Cancer Nanotechnology Excellence, and his colleagues developed their so-called nanobees to deliver toxic peptides such as melittin specifically to cancer cells while sparing healthy cells from the otherwise nonselective havoc these molecules cause. “The nanobees fly in, land on the surface of cells, and deposit their cargo of melittin, which rapidly merges with the target cells,” said Dr. Wickline. “We’ve shown that the bee toxin gets taken into the cells where it pokes holes in their internal structures.”

Melittin was of special interest to the investigators because the mechanism by which it kills cells is not likely to trigger the drug resistance that often develops with conventional anticancer therapies. “Cancer cells can adapt and develop resistance to many anticancer agents that alter gene function or target a cell’s DNA, but it’s hard for cells to find a way around the mechanism that melittin uses to kill,” said coauthor Paul Schlesinger, M.D., Ph.D.

The scientists tested nanobees in two sets of mice with malignant tumors. One set of mice was implanted with human cells, the other with melanoma tumors. After four to five injections of the melittin-carrying over several days, growth of the breast tumors slowed by nearly 25%, and the size of the melanoma tumors decreased by 88% compared with untreated tumors.

The researchers note that the nanobees accumulated in these solid tumors because the nanoparticles are small enough to escape the leaky blood vessels that surround tumors. The researchers also developed a nanobee that actively targets tumors. To do so, they decorated the nanobees with a molecule that binds to αvβ3-integrin, which is found on the surface of the newly developing blood vessels that sprout during the early stages of tumor development. The investigators hope that by targeting a process that starts when a tumor is small, their nanobees might be more effective against early-stage cancers. Indeed, injections of the targeted nanobees reduced the extent of proliferation of precancerous skin cells in the mice by 80%.

In addition to demonstrating the therapeutic potential of their nanobee formulations, the investigators also showed that nanoparticle encapsulation was key to creating an antitumor drug with suitable safety and pharmacological properties. Injecting significant amounts of melittin directly into the bloodstream produces widespread destruction of red blood cells. However, nanoparticle encapsulation spared red blood cells and other tissues from any damage—the nanoparticle-treated mice had normal blood counts, and tests were negative for the presence of blood-borne enzymes indicative of organ damage.

The nanobees also protected melittin from protein-destroying enzymes that the body produces. Although unattached melittin was cleared from circulation within minutes, half of the melittin on nanobees was still circulating 200 minutes later, enough to circulate through a mouse 200 times, giving the nanobees ample time to locate tumors.

“Melittin is a workhorse,” said Dr. Wickline, “It’s very stable on the nanoparticles, and it’s easily and cheaply produced. We are now using a nontoxic part of the melittin molecule to hook other drugs, targeting agents, or imaging compounds onto nanoparticles.”

The core of the nanobee is composed of perfluorocarbon, an inert compound used in artificial blood. The research group developed perfluorocarbon nanoparticles several years ago and has been studying their use in various medical applications, including the diagnosis and treatment of atherosclerosis and cancer. “We can add melittin to our nanoparticles after they are built,” Dr. Wickline explained. “If we’ve already developed nanoparticles as carriers and given them a targeting agent, we can then add a variety of components using native melittin or melittin-like proteins without needing to rebuild the carrier. Melittin fortunately goes onto the nanoparticles very quickly and completely and remains on the nanobee until cell contact is made.”

This work, which is detailed in the paper “Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth,” was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract is available at the journal’s Web site.

Provided by National Cancer Institute (news : web)

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Tumors feel the deadly sting of nanobees

Aug 10, 2009

(PhysOrg.com) -- When bees sting, they pump poison into their victims. Now the toxin in bee venom has been harnessed to kill tumor cells by researchers at Washington University School of Medicine in St. Louis. The researchers ...

Nanoparticles Delivery of 'Suicide DNA' Kills Prostate Tumors

May 22, 2007

Using nanoparticles developed by members of the Alliance for Nanotechnology in Cancer, a team of investigators at the Lankenau Institute for Medical Research, in Philadelphia, has developed a DNA-based therapeutic agent that ...

Nanoparticles Overcome Anticancer Drug Resistance

Jun 12, 2006

Too often, chemotherapy fails to cure cancer because some tumor cells develop resistance to multiple anticancer drugs. In most cases, resistance develops when cancer cells begin expressing a protein, known as p-glycoprotein, ...

Nanoparticles Image Breast Cancer

Jul 21, 2009

Current methods of detecting breast cancer suffer from low sensitivity, limited spatial resolution, or the need to use complicated and expensive radioisotope-based technologies. A new report from investigators at the Emory-Georgia ...

Targeted Nanoparticles Destroy Prostate Tumors

Apr 25, 2006

Biodegradable polymer nanoparticles, linked to a protein-binding nucleic acid known as an aptamer and loaded with the anticancer agent docetaxel, can target and kill prostate tumors growing in mice. Using this targeted nanoparticle ...

Nano-sized technology has super-sized effect on tumors

Apr 03, 2008

Anyone facing chemotherapy would welcome an advance promising to dramatically reduce their dose of these often harsh drugs. Using nanotechnology, researchers at Washington University School of Medicine in ...

Recommended for you

Engineered proteins stick like glue—even in water

1 hour ago

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed new materials that ...

Smallest possible diamonds form ultra-thin nanothreads

1 hour ago

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

xpst
not rated yet Aug 28, 2009
kjackson
not rated yet Aug 31, 2009
I saw a blog about apitherapy recently that was really interesting (http://iconsinmed...s.com/). It's a shame that this treatment and others aren't covered by insurance, or even considered as being "useful." For individuals with MS and other conditions, this type of treatment has the potential to be very valuable. The organization that puts out this blog (http://www.iconsinmed.org) is also really interesting. They use telemedicine to connect healthcare providers in the developing world with specialists to help improve care worldwide.
denijane
not rated yet Sep 01, 2009
Wow, that's a great. I just hope they really can target cancer cells so well, because otherwise, with such a dangerous substance it could become ugly.
And I didn't get what happens with the carriers after they deliver the substance and also what happens with them if they don't deliver it-how long are they supposed to stay in the body and how you take them out. And what's the effect of them while they're in. They are small, but still, they exist.