Chemist creates trapping technique for nanoparticles

Aug 17, 2009
This 3D graphic shows the "corral," or trapping area, which resembles a crater, surrounded by the slopes that represent the voltage of the charged surface.

(PhysOrg.com) -- A chemist at the University of Wisconsin-Milwaukee (UWM) has developed a kind of invisible fence for trapping and controlling particles as small as a single virus or large protein.

The technique, developed by Assistant Professor Jörg Woehl, takes advantage of the strong electrostatic field that exists in close proximity to tiny particles that carry an .

So far, Woehl and doctoral student Christine Carlson have confined particles of about 20 nanometers—the size of a virus—using the trap. But it is expected to work equally well for smaller molecules, giving it great potential as a tool in and biotechnology.

“Our ultimate objective is to go down to a single molecule,” he says. “We are well on our way.”

Unlike other methods currently available, Woehl’s technique is capable of trapping much smaller particles, and it can capture many particles at a time and hold them without the need for monitoring the particles’ position.

How it works

The trap is formed by a hole in a thin metal film deposited on a substrate. A solution containing the particle of interest is added to the surface. When the particle travels within the hole, or the trapping region, a voltage is applied. The particle remains confined there because all other areas of the surface are charged.

“The trapping field is created when the metal film is charged,” says Woehl. “Remove the voltage, and the particle is released.”

Depending on the charge of the particle, it will either remain trapped in the center of the corral, wiggling around due to collisions with molecules in the surrounding liquid, or it will move along the circular outline of the trap. For example, applying a negative voltage to the trap causes negatively charged molecules that are captured in the hole to be repelled from the rim area (since they carry the same charge).

Similarly, the application of a positive charge to the metal film causes a negatively charged particle to be trapped along the perimeter of the hole. But Woehl and Carlson were surprised to also find that these particles travel continuously around the rim while trapped. This is a behavior they have not yet explained.

The two have created a three-dimensional picture of the trap that resembles a crater at the top of a hill. They can control the depth of the “crater,” which corresponds to the uncharged region, by increasing the voltage to the metal surface.

Woehl and Carlson are presenting a poster on their research at the American Chemical Society’s national meeting this month.

Applications

Woehl’s trapping method could lead to new ways of interacting with the nanoworld such as the bottom-up assembly of complex molecular nanostructures or DNA manipulation, says Woehl.

Because it can capture several particles at once, it could be used as a micro-scale test tube to monitor chemical reactions happening among particles, he says. This kind of tool could also contribute to better biomedical testing technologies that would require only the slightest amount of material for a detailed analysis.

Trapping single such as RNA or proteins over an extended period of time, for example, could give scientists a better understanding of the factors that influence how they change shape - knowledge which could have important biomedical implications.

Provided by University of Wisconsin-Milwaukee

Explore further: Engineers show light can play seesaw at the nanoscale

add to favorites email to friend print save as pdf

Related Stories

Physicist confines plasma components in a trap within a trap

May 06, 2008

A University of Michigan professor has taken a step toward simulating a type of matter found in the crusts of neutron stars, in the cores of gas giant planets, and in exotic plasmas thought to be present in the earliest universe.

Magnetic particles act as ink in new printer

Mar 16, 2007

By using a laser beam to focus and push particles against a substrate, scientist Lars Helseth of Nanyang Technological University in Singapore has designed and built a unique type of colloidal printer. Taking ...

A synchrotron for neutral molecules

Jan 23, 2007

In the February issue of Nature Physics, Gerard Meijer and colleagues at the Fritz-Haber Institute, part of the Max Planck Society in Berlin, report the construction and operation of the first synchrotron for neutral molecu ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

6 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Aug 18, 2009
Please communicate with the group working on the
"Methyl Mecury" molecule! They NEED you!