New interferometer could simplify materials research

Aug 13, 2009 By Miranda Marquit feature

(PhysOrg.com) -- “Most current hard x-ray interferometers are based on crystals, which require their high quality and high mechanical stability,” Anatoly Snigirev tells PhysOrg.com. “This can make x-ray interferometry quite limited. What we have done is develop a different set up that is simpler.” Snigirev is a scientist at ESRF in Grenoble France. Along with scientists at the Russian Kurchatov Research Center in Moscow, and at IMT RAS in Chernogolovka, Russia, Snigirev proposes that refractive bilenses made from silicon can be used in place of crystals.

“We can get an that is more in line with classical visual optics,” Snigirev says. An interferometer works when beams of light are sent through slits or lenses, and patterns are detected against a background on the other side. The patterns reveal information about the object of study. “Our technique is sensitive enough for diagnostics and accurate measurements, and is more stable and easier to set up than using crystals.” Information on the work done by Snigirev and his colleagues is found in : “X-Ray Nanointerferometer Based on Si Refractive Bilenses.”

Using electron beam lithography, the lenses used by Snigirev and his peers were created by a process of deep reactive-ion etching into silicon. “We prepared concave lenses, and put them in a row. This inline approach increases the refraction power,” Snigirev explains. “Varying the number of individual lenses it is possible to focus x-rays at different distances from meter to milimeter focus distance and use this technique for nano-focusing.”

Rather than relying on double slit-type interferomter, which is difficult to accomplish and because of low resolution and loss of intensity, this team relied more on an interferometer related to the Billet split lens. In this classical optics technique, a lens is cut along the optic axis. This still allows for interference to be measured, but the intensity remains high, and the resolution is better.

Snigirev points out that one of the advantages of this system is that it is tunable. . “You can tune this ‘nanoruler’ system easily by changing x-ray energy or by moving objects along the optical axis.” Another advantage of the system is in the silicon construction of the lenses. “Silicon is very stable,” Snigirev explains. “It can also take a high heat load, as from a beam. In this case we are using x-rays, but it could be used for future X-ray Free-Electron laser projects.”

Indeed, the possible future applications of this interferometer set up have promise. “This could be very attractive for materials research,” Snigirev insists. “It would allow us a better look at photonic and colloidal crystals, multilayer structures, as well as other natural and synthetic mesoscopic materials”.

“Interferometry is used a great deal right now, and it could be improved for research into materials and also for other purposes. It is a very important technique,” Snigirev continues. “However, as it is done now it can be difficult to implement. Our approach is simpler, and it could really help in the development of future applications and materials development.”

More Information: A. Snigirev, et. al., “X-Ray Nanointerferometer Based on Si Refractive Bilenses,” Physical Review Letters (2009). Available online: http://link.aps.org/doi/10.1103/PhysRevLett.103.064801.

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Researchers design plasmonic cavity-free nanolaser

add to favorites email to friend print save as pdf

Related Stories

Fabricating 3D Photonic Crystals

Jan 21, 2009

(PhysOrg.com) -- “In photonic crystals, the ability to control the structure of a material in full three dimensional space, allows you to control the way that light flows through it,” John Rogers tells PhysOrg.com. “Thi ...

Breaking the barrier toward nanometer X-ray resolution

Sep 29, 2007

A team of researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have overcome a major obstacle for using refractive lenses to focus x-rays. This method will allow the efficient focusing ...

Measuring the Speed of Light in Composite Materials

Aug 02, 2009

(PhysOrg.com) -- Although the speed of light is constant in a vacuum, light slows down a small amount when traveling through other materials. While it's relatively easy to measure the speed of light in mediums ...

Microscope Sees with Nanoscale Resolution

Jan 28, 2008

Researchers have recently built an x-ray microscope that has a pixel resolution of just 15 nanometers, allowing scientists to study the properties of materials at the molecular scale and beyond.

Recommended for you

Researchers design plasmonic cavity-free nanolaser

1 hour ago

(Phys.org) —A team of researchers at Imperial College in London has designed a new type of laser, one that could be made much smaller than today's models because it would be cavity-free. In their paper ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Aug 14, 2009
The resulting, (low power), reading on an active cancer cell would be informative!