Physicists show way to count sweets in a jar -- from inside the jar

Jul 29, 2009

(PhysOrg.com) -- How many sweets fit into a jar? This question depends on the shapes and sizes of the sweets, the size of the jar, and how it is filled. Surprisingly, this ancient question remains unanswered because of the complex geometry of the packing of the sweets. Moreover, as any contestant knows, guessing the number of sweets in the jar is difficult because the sweets located at the center of the jar are hidden from view and can't be counted. Researchers at New York University have now determined how sweets pack from inside the jar, making it easier to more accurately count them.

To answer the question of how particles pack in general, the NYU team made a transparent, fluorescent packing of oil droplets in water, which allowed it to record three-dimensional images and examine the local geometry of each member of the pack. In other words, what does a packing look like from the point of view of a grain within -- i.e., a "granocentric" view?

Their findings, which appear in the latest issue of the journal Nature, show that packing strongly depends on the size distribution—larger particles pack with more neighbors than do smaller ones. Nevertheless, the average number of contacts per particle always stays the same to preserve mechanical stability.

Photo Credit - Top Images: Brujic Lab; Bottom Images: Martin Lacasse

These experimental clues led the researchers to develop a model that successfully captures the geometry, connectivity, and density of the observed sphere packings. This means that starting from a set of particles of known sizes, the density of packing can be determined, making it possible to guess the number of sweets in the jar. Indeed, the model was able to also predict experimentally observed trends in density for mixtures of particles of two different sizes with varying ratios.

Packing problems are important in technological settings as well, ranging from oil extraction through porous rocks to grain storage in silos to the compaction of pharmaceutical powders into tablets. The ability to predict the packing of polydisperse —a range of sizes in a single system—has significant impact on these and related technologies.

Source: New York University (news : web)

Explore further: A new X-ray microscope for nanoscale imaging

add to favorites email to friend print save as pdf

Related Stories

If you like fruit, you might love sweets

Jul 12, 2006

A U.S. study suggests people who like sweets eat more fruit than salty-snack lovers and people who love fruit eat more sweets than vegetable lovers.

Nanoscale Cubes and Spheres

Jan 03, 2007

Porous nano-objects with defined sizes and structures are particularly interesting, for example, as capsules for enzymes, a means of transport for pharmaceutical agents, or building blocks for larger nanostructures.

Study: Cats cannot taste sweets

Jul 25, 2005

United States and British researchers announced Monday they have found a defective gene that makes it impossible for cats to taste sugar or other sweets.

Staying out of jams

Jul 23, 2007

What do sand, coal, cereal, ice cubes, marbles, gravel, sugar, pills, and powders have in common" They are all granular materials, members of an unruly family of substances that refuse to completely conform to the laws of ...

Recommended for you

New filter could advance terahertz data transmission

16 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

16 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

18 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.