Purer water made possible by Sandia advance

Jul 21, 2009
This bar graph shows the efficacy of removing wild-type bacteriophage from Rio Grande water using the all-aluminum coagulant (yellow), the gallium-aluminum coagulant (pink) and a germanium-aluminum coagulant (green). While the gallium-aluminum coagulant is most effective, the germanium-aluminum coagulant is less effective than the all-aluminum coagulant. The gallium makes the active ingredient for binding contaminants more stable and effective, while the germanium, introduced as another variable, was found to make the active ingredient less stable and less effective. Credit: Mona Aragon, Sandia National Laboratories

By substituting a single atom in a molecule widely used to purify water, researchers at Sandia National Laboratories have created a far more effective decontaminant with a shelf life superior to products currently on the market.

Sandia has applied for a patent on the material, which removes bacterial, viral and other organic and inorganic contaminants from river water destined for human consumption, and from wastewater treatment plants prior to returning water to the environment.

"Human consumption of 'challenged' water is increasing worldwide as preferred supplies become more scarce," said Sandia principal investigator May Nyman. "Technological advances like this may help solve problems faced by water treatment facilities in both developed and developing countries."

The study was published in June 2009 in the journal Environmental Science & Technology (a publication of the American Chemical Society) and highlighted in the June 22 edition of Chemical & Engineering News. Sandia is working with a major producer of water treatment chemicals to explore the commercial potential of the compound.

The reagent, known as a coagulant, is made by substituting an atom of gallium in the center of an aluminum oxide cluster — itself a commonly used coagulant in water purification, says Nyman.

The substitution isn't performed atom by atom using nanoscopic tweezers but rather uses a simple chemical process of dissolving aluminum salts in water, gallium salts into a sodium hydroxide solution and then slowly adding the sodium hydroxide solution to the aluminum solution while heating.

"The substitution of a single gallium atom in that compound makes a big difference," said Nyman. "It greatly improves the stability and effectiveness of the reagent. We've done side-by-side tests with a variety of commercially available products. For almost every case, ours performs best under a wide range of conditions."

Wide-ranging conditions are inevitable, she said, when dealing with a natural water source such as a river. "You get seasonal and even daily fluctuations in pH, temperature, turbidity and water chemistry. And a river in central New Mexico has very different conditions than say, a river in Ohio."

The Sandia coagulant attracts and binds contaminants so well because it maintains its electrostatic charge more reliably than conventional coagulants made without gallium, itself a harmless addition.

The new material also resists converting to larger, less-reactive aggregates before it is used. This means it maintains a longer shelf life, avoiding the problem faced by related commercially available products that aggregate over time.

"The chemical substitution [of a gallium atom for an aluminum atom] has been studied by Sandia's collaborators at the University of California at Davis, but nobody has ever put this knowledge to use in an application such as removing water contaminants like microorganisms," said Nyman.

The project was conceived and all treatment studies were performed at Sandia, said Nyman, who worked with Sandia microbiologist Tom Stewart. Transmission electron microscope images of bacteriophages binding to the altered material were achieved at the University of New Mexico. Mass spectroscopy of the alumina clusters in solution was performed at UC Davis.

Source: Sandia National Laboratories (news : web)

Explore further: New detection technologies for bacterial pathogens

add to favorites email to friend print save as pdf

Related Stories

Secret lives of two elements uncovered

Oct 23, 2007

Unexpected differences recently discovered between the elements niobium and tantalum may lead to more optimized electronic materials and photocatalysts.

Scientists Find New Way to Produce Hydrogen

Jan 22, 2009

Scientists at Penn State University and the Virginia Commonwealth University have discovered a way to produce hydrogen by exposing selected clusters of aluminum atoms to water. The findings are important ...

Researchers develop unique 'surfactant' material

Jun 07, 2005

A unique class of materials developed by researchers at Sandia National Laboratories in Livermore, Calif., may prove useful in textile manufacturing, biomedical diagnostics, and other applications requiring ...

Recommended for you

Oat breakfast cereals may contain a common mold-related toxin

Feb 25, 2015

Oats are often touted for boosting heart health, but scientists warn that the grain and its products might need closer monitoring for potential mold contamination. They report in ACS' Journal of Agricultural and Food Chemistry that s ...

NETL invents improved oxygen carriers

Feb 24, 2015

One of the keys to the successful deployment of chemical looping technologies is the development of affordable, high performance oxygen carriers. One potential solution is the naturally-occurring iron oxide, ...

Research could make blue jeans green

Feb 23, 2015

Who doesn't like blue jeans? They're practically wrinkle-proof. The indigo dye that provides their distinctive color holds up to detergents, but ages into that soft, worn look. No wonder the average American ...

Novel electrode boosts green hydrogen research

Feb 20, 2015

Scientists from the National Physical Laboratory (NPL) have developed a novel reference electrode, and are working with hydrogen energy system manufacturer ITM Power to aid the development of hydrogen production ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

hrfJC
1 / 5 (3) Jul 25, 2009
These scientists did not do their homework if they neglected the imminent depletion of rare Gallium at currrent usage rates that would be further aggravated by wasting it in massive water treatment plants, possibly without recycling it at great expense from the huge mountains of sludge.
H Rutner, Biotech Consultant

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.