SRNL to study applicability of solar cell coatings

Jun 25, 2009

A project under way at the U.S. Department of Energy's Savannah River National Laboratory will study how special coatings that mimic structures found in nature can increase the usefulness of solar energy as a vital part of the nation's future energy strategy.

Working with Peng Jiang of the University of Florida, SRNL's Dr. Marie Kane is evaluating nanostructured coatings to determine the readiness of this new approach for increasing the productivity of by reducing reflection. They are studying application of the new coatings for a variety of long-term uses, including commercial and home-based solar cells, as well as harsh environments, such as those encountered by satellites in space. This work is sponsored by the DOE Office of Energy Efficiency and Renewable Energy Nanomanufacturing Program, and funded by the American Recovery and Reinvestment Act (ARRA).

"Solar energy is a tremendous force, but harnessing it for use is not always as simple as it seems," Dr. Kane says. "With most types of solar cells, you lose about one-third of the energy because the sunlight is simply reflected away." There are, however, new engineered coatings that, by mimicking the way a moth's eye absorbs light, reduce unwanted reflection from 30 percent to less than 2 percent on a typical silicon solar cell.

The SRNL project includes durability testing of these nanostructured coatings applied to various solar cell substrates to determine the feasibility of use in harsh environments, including heat, humidity, and the radiation encountered in outer space.

Nanotechnology, the understanding and control of matter at the atomic or molecular level, has the potential for major improvements in energy applications. Over the past seven years, the U.S. government has invested $8.3 billion in nanotechnology and made great strides in gaining fundamental knowledge at the nanometer scale.

An important next step in realizing the promise of nanotechnology is to improve production and manufacturing techniques for nanomaterials and nano-enabled products, many of which are "stuck at the lab scale." Projects selected by EERE's Nanomanufacturing Program will advance the state of nanomanufacturing, in part by improving the reliability of nanomaterials production.

Source: DOE/Savannah River National Laboratory

Explore further: Scientists fabricate defect-free graphene, set record reversible capacity for Co3O4 anode in Li-ion batteries

add to favorites email to friend print save as pdf

Related Stories

Nanotechnology to Create Green Hydrogen

Sep 24, 2004

Hydrogen solar greatly increases the efficiency of creating hydrogen from solar panels by using nanotechnology British company Hydrogen Solar has doubled the performance of its technology, which converts light and water directly ...

Solar cells of the future

Dec 18, 2007

A new material, nano flakes, may revolutionise the transformation of solar energy to electricity. If so, even ordinary households can benefit from solar electricity and save money in the future.

NREL Updates National Solar Radiation Database

May 25, 2007

The Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) and collaborators have updated the National Solar Radiation Database, a planning tool that provides critical information about the amount of solar ...

Nanotech to Improve Satellites and Solar Cells

Mar 09, 2006

More efficient space solar cells could mean better imagery satellites and improved solar energy technology. Scientists at the NanoPower Research Labs at Rochester Institute of Technology, led by director Ryne Raffaelle, are ...

Researchers Develop a Better Coating Solution

Jun 24, 2004

Innovative researchers at The University of Queensland have come up with a way to stop your bathroom mirrors, spectacles and swim goggles from ever fogging up again. UQ physicists Dr Paul Meredith and Dr Mi ...

Recommended for you

Copper shines as flexible conductor

9 hours ago

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Nanoparticles may aid oil recovery, frack fluid tracking

11 hours ago

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 0