Engineering autism: Mice with extra chromosome region show many autistic signs

Jun 25, 2009

Mice who inherit a particular chromosomal duplication from their fathers show many behaviors associated with human autism, researchers report in the June 26th issue of the journal Cell, a Cell Press Publication. The duplicated chromosomal region in mice is the equivalent of human chromosome 15q11-13, the most frequent cytogenetic abnormality observed in autism, accounting for some five percent of all cases.

The engineered mice validate the human chromosome abnormality as one cause of the disease, the researchers said. They will also serve as an invaluable tool for therapeutic development.

"We know several mice as 'putative' models of autism, which show face validity that they are similar to human patients," said Toru Takumi of Hiroshima University in Japan. "In addition to these similar phenotypes, our mice have construct validity," meaning that their symptoms are traced to the same biological cause.

Autism is a common and heterogeneous neuropsychiatric disorder with manifestations of impaired social interaction and communication as well as repetitive behavior or restricted interest, the researchers explained. It is also one of the most heritable of all mental disorders, suggesting that genetic factors play an important role in development of the disease.

Scientists have studied many gene candidates, and mice carrying some of those mutations do show some signs. Still the underlying autism remain largely mysterious.

Chromosomal abnormalities are thought to account for 10 to 20 percent of cases and duplication of chromosome 15q11-13 is the only recurrent aberration so far linked to the disease.

In the new study, Takumi's team generated mice with a duplication of a region on their chromosome 7, mirroring the autism-linked abnormality seen in humans. Mice who inherit that abnormality from their fathers show poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations and indications of anxiety, the results of extensive behavioral testing now show.

For instance, when given the option of spending time alone or in the presence of a stranger mouse, normal mice will often choose to hang out with the stranger, Takumi said. Mice with the chromosomal abnormality, on the other hand, more often choose to spend time with inanimate objects over fellow mice.

In tests of spatial memory, in which mice are trained to swim to a hidden platform, animals with the paternally inherited duplication were less able to adapt to changes in the platform's location than normal mice were. Another test, in which mice have to locate the correct hole to exit a box, showed similar results.

"We were honestly surprised to see behavioral inflexibility in two different reversal tests of learning and two different backgrounds," Takumi said. "Higher ultrasonic calls from pups with paternal duplication were unexpected" too. It's also hard to say exactly what those unusual calls mean for the mice, given scientists' limited understanding of mouse communication.

In other tests, the mice showed more signs of fear or anxiety, a feature common in autistic individuals.

The researchers also found molecular-level evidence that the duplication can lead to changes in a receptor for serotonin, a nerve messenger that acts as a growth factor in the immature brain. Those changes stem from different levels of one brain-specific small nucleolar RNA (snoRNA), known as MBII52, a molecule that is known to be involved in physiologically important "edits" to the receptor.

Because the gene that encodes MBII52 is "maternally imprinted," its expression in mice with the inherited duplication from their father was double that of normal mice or those who inherited the same abnormality from their mothers, they report. (Imprinted genes are chemically modified to prevent their expression.) Studies in cultured neurons showed that those changes to MBII52 are associated with an altered neural response, suggesting that changes in serotonin signals might underlie the aberrant behaviors exhibited by the animals.

In addition to those insights, the mice may yet hold many more clues for understanding autism and potential for new treatments.

"The link between social behaviors in rodents and social behavior in humans is difficult to establish," the researchers concluded. "Our model mouse will be valuable not only for therapeutic studies but also provides a starting point for more detailed genetic analysis directed toward understanding the etiology of developmental brain disorders."

Source: Cell Press (news : web)

Explore further: For legume plants, a new route from shoot to root

add to favorites email to friend print save as pdf

Related Stories

Study finds first-ever genetic animal model of autism

Dec 09, 2007

By introducing a gene mutation in mice, investigators have created what they believe to be the first accurate model of autism not associated with a broader neuropsychiatric syndrome, according to research presented at the ...

Multiple genes implicated in autism

Feb 09, 2009

(PhysOrg.com) -- By pinpointing two genes that cause autism-like symptoms in mice, researchers at MIT’s Picower Institute for Learning and Memory have shown for the first time that multiple, interacting genetic risk factors ...

Researchers develop mouse model of autism spectrum disorders

Sep 06, 2007

Howard Hughes Medical Institute researchers have genetically engineered mice that harbor the same genetic mutation found in some people with autism and Asperger syndrome. Mice with this mutation show a similar type of social ...

Researchers link early stem cell mutation to autism

Jun 30, 2008

In a breakthrough scientific study published today in the Proceedings of the National Academy of Sciences, scientists at the Burnham Institute for Medical Research have shown that neural stem cell development may be linked ...

Recommended for you

For legume plants, a new route from shoot to root

3 hours ago

A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into the roots to control ...

Controlling the transition between generations

22 hours ago

Rafal Ciosk and his group at the FMI have identified an important regulator of the transition from germ cell to embryonic cell. LIN-41 prevents the premature onset of embryonic transcription in oocytes poised ...

User comments : 0