Cells are like robust computational systems

Jun 16, 2009

Gene regulatory networks in cell nuclei are similar to cloud computing networks, such as Google or Yahoo!, researchers report today in the online journal Molecular Systems Biology. The similarity is that each system keeps working despite the failure of individual components, whether they are master genes or computer processors.

This finding by an international team led by Carnegie Mellon University computational biologist Ziv Bar-Joseph helps explain not only the robustness of cells, but also some seemingly incongruent experimental results that have puzzled biologists.

"Similarities in the sequences of certain master genes allow them to back up each other to a degree we hadn't appreciated," said Bar-Joseph, an assistant professor of computer science and machine learning and a member of Carnegie Mellon's Ray and Stephanie Lane Center for Computational Biology.

Between 5 and 10 percent of the genes in all living species are master genes that produce proteins called transcription factors that turn all other genes on or off. Many diseases are associated with mutations in one or several of these transcription factors. However, as the new study shows, if one of these genes is lost, other "parallel" master genes with similar sequences, called paralogs, often can replace it by turning on the same set of genes.

That would explain the curious results of some experiments in organisms ranging from yeast to humans, in which researchers have recently identified the genes controlled by several master genes. Researchers have been surprised to find that when they remove one master gene at a time, almost none of the genes controlled by that master gene are de-activated.

In the current work, the Carnegie Mellon researchers and their colleagues in Israel and Spain identified the most probable backup for each master gene. They found that removing the master genes that had very similar backups had almost no noticeable effect, but when they removed master genes with less similar backups, the effect was significant. Additional experiments showed that when both the master gene and its immediate backup were removed, the effects became very noticeable, even for those genes with a similar backup gene. In one example, when the gene Pdr1 was removed, researchers found almost no decrease in activation among the genes it controls; when Pdr1 and its paralog were removed, however, 19 percent of the genes Pdr1 controls failed to activate.

"It's extremely rare in nature that a cell would lose both a master gene and its backup, so for the most part cells are very robust machines," said Anthony Gitter, a graduate student in Carnegie Mellon's Computer Science Department and lead author of the Nature MSB article. "We now have reason to think of cells as robust computational devices, employing redundancy in the same way that enables large computing systems, such as Amazon, to keep operating despite the fact that servers routinely fail."

Source: Carnegie Mellon University (news : web)

Explore further: Researchers uncover secrets of internal cell fine-tuning

add to favorites email to friend print save as pdf

Related Stories

Putting microRNAs on the stem cell map

Aug 07, 2008

Embryonic stem cells are always facing a choice—either to self-renew or begin morphing into another type of cell altogether. It's a tricky choice, governed by complex gene regulatory circuitry driven by a handful of key ...

Clocking in and out of gene expression

Jun 14, 2007

A chemical signal acts as time clock in the expression of genes controlled by a master gene called a coactivator, said Baylor College of Medicine researchers in a report that appears in the journal Cell today.

Mice and men make livers differently

May 21, 2007

Scientists often study mice as a model for human biology and disease, because their basic biological processes are assumed to be essentially the same as those of humans.

Evolution is driven by gene regulation

Aug 09, 2007

It is not just what’s in your genes, it’s how you turn them on that accounts for the difference between species — at least in yeast — according to a report by Yale researchers in this week’s issue of Science.

Recommended for you

Researchers uncover secrets of internal cell fine-tuning

8 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Microscopic rowing—without a cox

9 hours ago

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Illuminating the dark side of the genome

15 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

User comments : 0