Scientists invent 1.2nm molecular gear

Jun 15, 2009

Scientists from A*STAR's Institute of Materials Research and Engineering (IMRE), led by Professor Christian Joachim, have scored a breakthrough in nanotechnology by becoming the first in the world to invent a molecular gear of the size of 1.2nm whose rotation can be deliberately controlled. This achievement marks a radical shift in the scientific progress of molecular machines and is published in Nature Materials, one of the most prestigious journals in materials science.

Said Prof Joachim, "Making a gear the size of a few atoms is one thing, but being able to deliberately control its motions and actions is something else altogether. What we've done at IMRE is to create a truly complete working gear that will be the fundamental piece in creating more complex molecular machines that are no bigger than a grain of sand."

Prof Joachim and his team discovered that the way to successfully control the rotation of a single-molecule gear is via the optimization of molecular design, molecular manipulation and surface atomic chemistry. This was a breakthrough because before the team's discovery, motions of molecular rotors and gears were random and typically consisted of a mix of rotation and lateral displacement. The scientists at IMRE solved this scientific conundrum by proving that the rotation of the molecule-gear could be wellcontrolled by manipulating the electrical connection between the molecule and the tip of a Scanning Tunnelling Microscope while it was pinned on an atom axis.

Said Dr Lim Khiang Wee, Executive Director of IMRE, "Christian and his team's discovery shows that it may one day be possible to create and manipulate molecular-level machines. Such machines may, for example, walk on DNA tracks in the future to deliver therapeutics to heal and cure. There already exists at least one international roadmap for creating such productive nanosystems. As we push the frontiers of nanotechnology, we increase our understanding of new phenomena at the nanoscale. This paper is a valuable step on the long road to applying this understanding for discoveries and breakthroughs in and bring to reality the tiny nanobots and nanomachines from science fiction movies."

Source: Agency for Science, Technology and Research

Explore further: Thin diamond films provide new material for micro-machines

add to favorites email to friend print save as pdf

Related Stories

Turning an axel mounted molecular wheel

Jan 23, 2007

Researchers at the Centre for Material Development and Structural Studies in Toulouse (CEMES-CNRS) and their colleagues at the Free University of Berlin have, for the first time, managed to control the rotation of a wheel ...

Single molecule is in driver's seat of molecular machine

Jul 30, 2005

While the human body has plenty of specialized molecular motors and machines powering the mechanical work necessary for cells to function properly, scientists themselves face many hurdles as they try to create their own molecular ...

Computing in a molecule

Dec 19, 2008

(PhysOrg.com) -- Over the last 60 years, ever-smaller generations of transistors have driven exponential growth in computing power. Could molecules, each turned into miniscule computer components, trigger ...

Recommended for you

Light pulses control graphene's electrical behavior

18 hours ago

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

A new way to make microstructured surfaces

Jul 30, 2014

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel three-dimensional textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Damon_Hastings
not rated yet Jun 15, 2009
Yes, but *can* they make the nanobots unstoppably self-replicating? I'm tired of these wimpy non-replicating nanobots. Give me my gray goo!