HIV-1's 'hijacking mechanism' pinpointed by researchers

Jun 10, 2009

Researchers at McGill University and the affiliated Lady Davis Institute for Medical Research at Montreal's Jewish General Hospital - along with colleagues at the University of Manitoba and the University of British Columbia - may have found a chink in the armour of the human immunodeficiency virus type 1 (HIV-1), the microorganism which causes AIDS. They have pinpointed the key cellular machinery co-opted by HIV-1 to hijack the human cell for its own benefit. Their study was published in May in the Journal of Biological Chemistry.

Once a cell is infected with HIV-1, activation of the virus's gene generates a large HIV-1 RNA molecule known as the RNA . This is then transported from the cell nucleus to the inner surface of the . The RNA genome can produce both structural proteins and enzymes, but once it arrives at the plasma membrane it can also assemble into new copies of the virus that actually bud out of the cell. Dr. Andrew J. Mouland and his colleagues have discovered how the RNA genome gets transported - or trafficked - from the nucleus to the plasma membrane.

"There is a highway inside the human cell," explained Dr. Mouland, Associate Professor at McGill's Departments of Medicine and Microbiology and Immunology and head of the HIV-1 RNA Trafficking Laboratory at the Lady Davis Institute. "When you drive your car to Toronto you're 'trafficking' the items in your trunk. Similarly, what we have shown is that HIV-1 commandeers the host cell's endosomal machinery to traffic its structural proteins and RNA genome. Imagine that it's essentially jumping on board for the ride and directing it to where it needs to go. This trafficking can occur very fast in cells; so this is how these key components of HIV-1 so efficiently get to the plasma membrane, where the virus can begin to assemble.

"The RNA genome is critical, because if it doesn't get trafficked to the right place at the plasma membrane, the virus will not be infectious," he explained.

This discovery is extremely exciting, Dr. Mouland said, because now that researchers understand a little more about how the cell's transport machinery is hijacked by HIV-1, they have hopes that they can now begin to devise strategies to block the process.

Source: McGill University (news : web)

Explore further: Chemists modify antibiotic to vanquish resistant bacteria

add to favorites email to friend print save as pdf

Related Stories

HIV measurement is questioned

Sep 27, 2006

Preliminary U.S. research indicates the HIV RNA level in untreated HIV-infected patients has little value in predicting the rate of CD4 cell count decrease.

Mutant host cell protein sequesters critical HIV-1 element

Jan 15, 2009

Scientists have identified a new way to inhibit a molecule that is critical for HIV pathogenesis. The research, published by Cell Press in the January 16th issue of the journal Molecular Cell, presents a target for develo ...

Novel regulatory step during HIV replication

Nov 14, 2008

A previously unknown regulatory step during human immunodeficiency (HIV) replication provides a potentially valuable new target for HIV/AIDS therapy, report researchers at the Salk Institute for Biological Studies and the ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

User comments : 0