Bacteria from the deep can clean up heavy metals

Jun 05, 2009

A species of bacteria, isolated from sediments deep under the Pacific Ocean, could provide a powerful clean-up tool for heavy metal pollution.

Writing in the current issue of the journal, Microbiology, Professor Gejiao Wang and his colleagues from Huazhong Agricultural University in Wuhan, PR China describe how a particular strain of Brachybacterium, strain Mn32, proved to be highly effective in removing manganese from solutions, converting it into insoluble manganese oxides.

Not only did the directly oxidize the manganese but the resulting oxides themselves also absorbed the metal from the culture solution, making Brachybacterium sp Mn32 a potentially useful candidate for use in bioremediation and cleaning up pollution.

As well as removing manganese from its environment, the Brachybacterium also absorbed significant amounts of zinc and nickel. All of these metals are found as pollutants in water and soils contaminated by heavy industries such as steel-making.

Manganese oxides can be manufactured chemically and are known to absorb zinc and nickel; but the oxides produced by this bacterium absorbed two- to three- times more metal. Professor Wang's team showed that the crystal structure of the bacterial manganese oxides is different to that of the chemically produced ones, with a greater surface area which enables more of the metal ions to be absorbed.

Describing the work, Professor Wang said, "The next stage of our research is to immobilize this bacterial strain into a bioreactor to test its ability to remove manganese and other heavy metals in such a system. If successful it could provide a more efficient way to clean up heavy metal pollutants."

Source: Society for General Microbiology

Explore further: Researchers discover new strategy germs use to invade cells

add to favorites email to friend print save as pdf

Related Stories

For clean air

Mar 30, 2007

In addition to nitrogen oxides and sulfur oxides, many volatile organic compounds (VOCs) in air contribute to smog and high ozone levels, as well as potentially damaging human health. Clean-air laws are thus rightly continuing ...

How crystal becomes a conductor

Feb 05, 2008

Squeeze a crystal of manganese oxide hard enough, and it changes from an electrical insulator to a conductive metal. In a report published online this week by the journal Nature Materials, researchers use computational modeli ...

Scientists unwrap the elements of life

Oct 22, 2008

Researchers at Newcastle University have taken a step forward in our understanding of how the fundamental building blocks of life are put together.

Scientists identify potential key to Lyme disease

Feb 09, 2009

Researchers at UT Southwestern Medical Center have identified a protein that may help give Lyme disease its bite. The findings suggest that the bacterial protein, which aids in transporting the metal manganese, is essential ...

Recommended for you

Researchers discover new strategy germs use to invade cells

20 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

20 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Andrux
not rated yet Jun 05, 2009
Could these bacteria (or another close relative) be used to neutralize radioactive waste? Maybe this could be our short term solution to this problem until we find a viable way of making a fusion reactor.
fuzz54
not rated yet Jun 05, 2009
Making radioactive waste non-radioactive seems like a tall order coming from a chemistry perspective. That would be the holy grail in radioactive waste management.
mattytheory
not rated yet Jun 05, 2009
^Is that even possible considering chemistry deals with electrons which are not part of the nucleus of an atom where nuclear reactions take place?
toyo
not rated yet Jun 05, 2009
No, using bacteria to 'clean' radioactive waste would result in radioactive bacteria.
Radioactivity is unaffected by chemically or biologically active agents.