Bacteria from the deep can clean up heavy metals

Jun 05, 2009

A species of bacteria, isolated from sediments deep under the Pacific Ocean, could provide a powerful clean-up tool for heavy metal pollution.

Writing in the current issue of the journal, Microbiology, Professor Gejiao Wang and his colleagues from Huazhong Agricultural University in Wuhan, PR China describe how a particular strain of Brachybacterium, strain Mn32, proved to be highly effective in removing manganese from solutions, converting it into insoluble manganese oxides.

Not only did the directly oxidize the manganese but the resulting oxides themselves also absorbed the metal from the culture solution, making Brachybacterium sp Mn32 a potentially useful candidate for use in bioremediation and cleaning up pollution.

As well as removing manganese from its environment, the Brachybacterium also absorbed significant amounts of zinc and nickel. All of these metals are found as pollutants in water and soils contaminated by heavy industries such as steel-making.

Manganese oxides can be manufactured chemically and are known to absorb zinc and nickel; but the oxides produced by this bacterium absorbed two- to three- times more metal. Professor Wang's team showed that the crystal structure of the bacterial manganese oxides is different to that of the chemically produced ones, with a greater surface area which enables more of the metal ions to be absorbed.

Describing the work, Professor Wang said, "The next stage of our research is to immobilize this bacterial strain into a bioreactor to test its ability to remove manganese and other heavy metals in such a system. If successful it could provide a more efficient way to clean up heavy metal pollutants."

Source: Society for General Microbiology

Explore further: Microbes provide insights into evolution of human language

add to favorites email to friend print save as pdf

Related Stories

For clean air

Mar 30, 2007

In addition to nitrogen oxides and sulfur oxides, many volatile organic compounds (VOCs) in air contribute to smog and high ozone levels, as well as potentially damaging human health. Clean-air laws are thus rightly continuing ...

How crystal becomes a conductor

Feb 05, 2008

Squeeze a crystal of manganese oxide hard enough, and it changes from an electrical insulator to a conductive metal. In a report published online this week by the journal Nature Materials, researchers use computational modeli ...

Scientists unwrap the elements of life

Oct 22, 2008

Researchers at Newcastle University have taken a step forward in our understanding of how the fundamental building blocks of life are put together.

Scientists identify potential key to Lyme disease

Feb 09, 2009

Researchers at UT Southwestern Medical Center have identified a protein that may help give Lyme disease its bite. The findings suggest that the bacterial protein, which aids in transporting the metal manganese, is essential ...

Recommended for you

Cell division speed influences gene architecture

19 hours ago

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

21 hours ago

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

22 hours ago

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Andrux
not rated yet Jun 05, 2009
Could these bacteria (or another close relative) be used to neutralize radioactive waste? Maybe this could be our short term solution to this problem until we find a viable way of making a fusion reactor.
fuzz54
not rated yet Jun 05, 2009
Making radioactive waste non-radioactive seems like a tall order coming from a chemistry perspective. That would be the holy grail in radioactive waste management.
mattytheory
not rated yet Jun 05, 2009
^Is that even possible considering chemistry deals with electrons which are not part of the nucleus of an atom where nuclear reactions take place?
toyo
not rated yet Jun 05, 2009
No, using bacteria to 'clean' radioactive waste would result in radioactive bacteria.
Radioactivity is unaffected by chemically or biologically active agents.

More news stories

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

FCC to propose pay-for-priority Internet standards

The Federal Communications Commission is set to propose new open Internet rules that would allow content companies to pay for faster delivery over the so-called "last mile" connection to people's homes.

SK Hynix posts Q1 surge in net profit

South Korea's SK Hynix Inc said Thursday its first-quarter net profit surged nearly 350 percent from the previous year on a spike in sales of PC memory chips.