Toward new drugs that turn genes on and off

Jun 04, 2009
Scientists found a group of molecules that could provide clues to the development of various diseases. Credit: The American Chemical Society

Scientists in Michigan and California are reporting an advance toward development of a new generation of drugs that treat disease by orchestrating how genes in the body produce proteins involved in arthritis, cancer and a range of other disorders. Acting like an “on-off switch,” the medications might ratchet up the production of proteins in genes working at abnormally low levels or shut off genes producing an abnormal protein linked to disease.

Their report is in the current issue of ACS .

In the study, Anna K. Mapp and colleagues discusses that cause to be active and churn out proteins — so-called transcriptional activators. That’s because because they control a key process known as transcription, in which instructions coded in genes produce proteins. Malfunctions in these activators could lead to altered transcription patterns that lead to disease. For example, variations in the tumor suppressor gene p53 are found in more than half of all human cancers.

Mapp describes discovery of a group of molecules that could be used to help scientists better understand transcription. Known as activator artificial transcriptional activation domains, these small molecules mimic natural activators and could provide insights on how mistakes in gene regulation result in various diseases.

“Evidence suggests that these small molecules mimic the function and mechanism of their natural counterparts and present a framework for the broader development of small molecule transcriptional switches,” Mapp states.

More information:

Source: ACS

Explore further: Chemical biologists find new halogenation enzyme

add to favorites email to friend print save as pdf

Related Stories

Small molecules mimic natural gene regulators

Jun 03, 2009

(PhysOrg.com) -- In the quest for new approaches to treating and preventing disease, one appealing route involves turning genes on or off at will, directly intervening in ailments such as cancer and diabetes, which result ...

Rewrite the textbooks: Transcription is bidirectional

Jan 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier ...

Early-stage gene transcription creates access to DNA

Oct 06, 2008

A gene contained in laboratory yeast has helped an international team of researchers uncover new findings about the process by which protein molecules bind to control sequences in genes in order to initiate gene expression, ...

Recommended for you

Chemical biologists find new halogenation enzyme

13 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

18 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

18 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

20 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 0