DNA molecules can detect pathogens, deliver drugs

May 20, 2009 By Anne Ju
In the presence of certain pathogens, DNA-based molecules form chains and curl up into spheres. Visible here as red dots, the spheres are shown entering cells, which demonstrates their drug delivery capabilities. Image: Luo Labs

(PhysOrg.com) -- First, Cornell researchers created DNA "bar codes" -- strands of the genetic material that quickly identify the presence of different molecules by fluorescing. Now, they have created new DNA molecules that can detect pathogens and deliver drugs to cells when they form long chains called polymers.

Cornell researcher Dan Luo and colleagues describe in the May 4 online Nature that their simple DNA molecules, or monomers, link into polymers under and in the presence of such as SARS and HIV.

The research team, which included first author and postdoctoral associate Jong B. Lee and David Muller, associate professor of applied and engineering physics, report that the polymers, made up of thousands of monomers, allow for the fast detection of pathogens. The researchers used asymmetric strands of DNA, characterized by unique sequences at the ends of each branch, which they call zip codes. Each zip code can link to a corresponding sequence, including the DNA of such pathogens as HIV. When the zip codes and pathogens find each other, they form chains that curl up into spheres and are visible under a microscope.

Using the same principle, the researchers also demonstrated attaching multiple nucleic acid-based drugs, along with tracers, to the DNA strands, which were then absorbed by cells.

Luo, associate professor of biological and environmental engineering, explained that such work illustrates how DNA is not only a genetic material, but can be a useful structure to carry drugs or other substances.

"The genetic part is the recognition of the pathogen," he said. "The generic part is making the nanostructure."

Provided by Cornell University (news : web)

Explore further: Flower-like magnetic nanoparticles target difficult tumors

add to favorites email to friend print save as pdf

Related Stories

Metal sheets with DNA framework may enable nanocircuits

May 20, 2009

(PhysOrg.com) -- Using DNA not as a genetic material but as a structural support, Cornell researchers have created thin sheets of gold nanoparticles held together by strands of DNA. The work could prove useful ...

Synthetic DNA Makes Better Hydrogels for Drug Delivery

Sep 26, 2006

Using synthetic DNA formed into crosses, Y's and T's, Cornell researchers have created biocompatible, biodegradable, inexpensive hydrogels that can be easily formed into any desired shape for biomedical applications.

Researchers create DNA buckyballs for drug delivery

Aug 29, 2005

DNA isn't just for storing genetic codes any more. Since DNA can polymerize -- linking many molecules together into larger structures -- scientists have been using it as a nanoscale building material, constructing ...

DNA-based gel produces proteins without live cells

Apr 01, 2009

(PhysOrg.com) -- A new method developed by Cornell biological engineers offers an efficient way to make proteins for use in medicine or industry without the use of live cells. The proteins made in this way ...

Recommended for you

Electrons moving along defined snake states

18 hours ago

Physicists at the University of Basel have shown for the first time that electrons in graphene can be moved along a predefined path. This movement occurs entirely without loss and could provide a basis for ...

New nanodevice defeats drug resistance

Mar 02, 2015

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by MIT researchers can help overcome that by first blocking ...

Glass coating improves battery performance

Mar 02, 2015

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (1) May 20, 2009
Its sure to cause a big immune response, possibly pathogenic. Injecting them can result in lupus autoimmiune responses.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.