Novel approach estimates nanoparticles in environment

May 20, 2009
This is bulk titanium dioxide. Credit: Duke University

Without knowing how much of an industrial chemical is being produced, it is almost impossible for scientists to determine if it poses any threat to the environment or human health.

Civil engineers at Duke University believe they have come up with a novel way of estimating how much of one such material - - is being generated, laying the groundwork for future studies to assess any possible risks.

This information is especially valuable if the chemicals are in the form of nano-particles, which possess unique properties because of their miniscule size. are attractive for a wide range of products, little is known about their consequences in the environment. One of the most widely used is the nanoparticle form of titanium dioxide, which can be found in such diverse products as sunscreens and toothpaste to paints and papers. It is also used in water treatment.

"The biggest problem we face in trying to determine any risks of titanium dioxide nanoparticles is that no one really knows how much of it there is," said Christine Robichaud, graduate student in civil and environmental engineering at Duke's Pratt School of Engineering. The results of her analysis were published online in the Journal of Environmental Science and Technology.

Robichaud found it especially difficult trying to collect this data, since the companies that process titanium dioxide were not willing to reveal information they deemed proprietary. So she used a novel approach developed by collaborators Lynne Zucker and Michael Darby at the University of California Los Angeles to estimate the rate of innovation in the biotechnology industry.

"We combined science and engineering knowledge with business and economic modeling to come up with what we think is the maximum amount of titanium dioxide nanoparticles out there," Robichaud said. "By taking the amount of bulk titanium dioxide produced, which is better understood, and applying the rates of new technologies to convert it to the nanoparticle form found in journal articles and patent applications, we estimated the maximum ceiling amount."

Based on her calculations, Robichaud found that the production of titanium dioxide nanoparticles was negligible in 2002 and rose to about 2.5 percent of the total amount of titanium dioxide produced today. By 2015, nanoparticle production is estimated to be about 10 percent of the total, as more companies switch to newer technology. Under the most aggressive scenario, practically all of titanium dioxide in the U.S., about 2.5 million metric tons, would be in nanoparticle form by 2025, Robichaud concluded.

"Knowing the amount of this material is important because the more of it we make, the more likely it is to enter the environment and come into contact with humans with unknown consequences," said Mark Wiesner, professor of civil and environmental engineering and senior member of the research team. He also directs the federally funded Center for the Environmental Implications of NanoTechnology (CEINT), which is based at Duke.

"We do not have a good handle on how much is out there, and even less about what that might mean," he continued. "Finding an upper limit on the potential for exposure is the critical first step in assessing risk. Even if these nanoparticles are toxic, a low exposure to them may limit the risk. We just don't know yet. I like to use the example of sharks. Everyone knows they're dangerous, but not if you spend your entire life in Nebraska."

Now that the researchers have a better idea how much of this nanomaterial could be produced in the coming years, they plan to focus on specific types of products.

"We want to get a better idea of where in the process these nanoparticles might be released into the air, water or soil," Robichaud said. "It could be during mining, during the production of the nanoparticles, production of the specific product using the nanoparticles, the use of the product, or its ultimate disposal."

Source: Duke University (news : web)

Explore further: Gold nanorods target cancer cells

add to favorites email to friend print save as pdf

Related Stories

Nanoparticle impact on plants

Dec 08, 2005

Nanoparticles of aluminum oxide, commonly found in everything from sunscreen lotions to environmental catalysts that reduce pollution, can stunt root growth in plants, although preliminary findings suggest extremely high ...

Nanocoatings: A bathroom that cleans itself

Feb 07, 2006

Cleaning bathrooms may become a thing of the past with new coatings that will do the job for you. Researchers at the University of New South Wales are developing new coatings they hope will be used for self-cleaning ...

Russian Titanium

Jul 29, 2005

The situation regarding titanium is paradoxical. On the one hand, titanium is found in abundance in the natural environment: in terms of natural occurrence in the earth's crust, the element is the third among all metals, ...

Hydrogen generation without the carbon footprint

Jul 15, 2008

A greener, less expensive method to produce hydrogen for fuel may eventually be possible with the help of water, solar energy and nanotube diodes that use the entire spectrum of the sun's energy, according to Penn State researchers. ...

Greener extraction of one of nature's whitest minerals

Feb 11, 2008

From medicine to make-up, plastics to paper - hardly a day goes by when we don't use titanium dioxide. Now researchers at the University of Leeds have developed a simpler, cheaper and greener method of extracting higher yields ...

Recommended for you

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

googleplex
not rated yet May 20, 2009
Nano particles are completely untested in terms of mid-long term health effects. Diesel soot and candels are probably high on the list. Scented candles being the worst pollutent as it dumps the soot in a confined living space. The soot enters the blood stream via lungs which cannot filter such fine particulates. We already know that diesel soot causes strokes. The other big concern is sun-blocks. It is already known that carbon nano tubes devastate living cells.
Effectively the molecular machinary inside the cell gets contaminated with these pollutants and breaks down. The cell has little protection against nano particles as our bodies have evolved to defend against natural pathogens, not synthetic pathogens.
I hope someone can prove my thesis to be wrong.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.