Equivalence principle in space test

May 11, 2009
Equivalence principle in space test
The "Microscope" space project will check the equivalence principle of inert and heavy mass with so far unequalled accuracy. The test masses for the acceleration experiments have (in the case of the external cylinders) a length of 80 mm and an inner diameter of 60 mm. The surface roughness is smaller than 0.2 µm. (Image: CNES/PTB)

Since Galileo Galilei and Newton, the assumption is valid that inert and heavy mass are equivalent. This is, however, questioned by new physical theories such as the String theory. Now, the equivalence principle is put to test with so far unachieved accuracy within the scope of the "Microscope" space project -- a German-French cooperation. PTB (Physikalisch-Technische Bundesanstalt, Germany) has developed the manufacturing and measuring methods for the test masses.

The test masses are required for the acceleration experiments in a near-Earth orbit.

Space is the ideal place to check the equivalence of inert and heavy mass with an accuracy impossible under terrestrial conditions. This is why in 2013, the French Space Agency CNES (Centre National d'Etudes Spatiales) will bring a micro satellite in a near-Earth orbit and perform acceleration tests on different test masses. Main items of these tests are pairs of concentrically nested metal cylinders which flow in the satellite in equilibrium between the of the Earth (which acts on the heavy mass of the cylinder) and the centrifugal force (which acts on the inert mass). If the satellite is, however, selectively accelerated, the equilibrium of forces is annulled.

The validity of these acceleration experiments decisively depends on the quality of the test masses used. Only if mass, form, density and thermal expansion of the cylinders are known with great accuracy, can the possibly very small differences between inert and heavy mass be observed anyway.

PTB's Scientific Instrumentation Department has now succeeded in optimizing the manufacturing process for the test masses (made of a standard titan alloy and a very special platinum rhodium alloy) in such a way that the deviations in form and dimensions lie in all three space dimensions of the metal cylinders in the range of 1 µm. This precision represents an enormous technical challenge in which the theoretical production limits of the usable manufacturing machines were almost reached. This is why a comprehensive measuring technique had to be integrated into the processing station.

The prototypes manufactured so far were checked by the respective technical laboratories of PTB. They meet the accuracy aimed at and will be used in the Centre of Applied Space Technology and Microgravitation (ZARM) in Bremen - a coo-peration partner in the project - for measurements in the drop tower which are performed before the orbital experiment is carried out. After evaluation of these measurements, PTB will manufacture the actual test masses for the satellite experiments

Source: Physikalisch-Technische Bundesanstalt

Explore further: Uncovering the forbidden side of molecules

add to favorites email to friend print save as pdf

Related Stories

Testing the Equivalence Principle

May 21, 2007

Standing on the Moon in 1971, Apollo 15 astronaut Dave Scott held his hands out at shoulder height, a hammer in one hand and a feather in the other. And as the world looked on via live television, he let go.

Error message! How mobile phones distort measurements

Sep 17, 2008

Nowadays we don't only take measurements with simple measuring devices, but also with whole measuring systems. These are very complex and are completely set up from their component parts at the point of use. Vehicle scales ...

The day LISA Pathfinder hung in the balance

Oct 11, 2006

At the core of ESA's LISA Pathfinder mission sit two small hearts. Each is a cube, just 5 centimetres across. Together they will allow LISA Pathfinder to lay the foundations for future space-based measurements ...

Measuring the density of ultra-pure water

Dec 18, 2007

For oceanography – and there in particular for the description of ocean currents – accurate measurements of the density of sea water are of great importance. For this purpose, measuring instruments are ...

Optical Atomic Clock: A long look at the captured atoms

Feb 05, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than ...

Recommended for you

Uncovering the forbidden side of molecules

18 hours ago

Researchers at the University of Basel in Switzerland have succeeded in observing the "forbidden" infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives ...

How Paramecium protozoa claw their way to the top

Sep 19, 2014

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Alizee
May 11, 2009
This comment has been removed by a moderator.
JIMBO
5 / 5 (2) May 12, 2009
"Since Galileo Galilei and Newton, the assumption is valid that inert and heavy mass are equivalent"...
Some of the worst science writing I have ever read.
It should read " inertial and gravitational mass".
Their equivalence is the backbone of general relativity. If I want to learn more about this `Microscope' project, I'll hit the arxiv, thank you.
earls
not rated yet May 12, 2009
Welp, I hope for the theorists' sake the experimental data falls within the margin of error. ;)

Then again, I suppose it would be interesting to see how fast a patch is applied and where it comes from.