HARPS-NEF to comb Kepler targets for new Earths

Apr 20, 2009
The original HARPS spectrograph at the European Southern Observatory, during laboratory tests. The vacuum tank which isolates the spectrograph from the environment is open, allowing some of the high-precision optical components to be seen. The large optical grating, measuring 20 x 80 cm, is visible on top of the bench. It disperses the incoming stellar light into the spectrum from which the stellar Doppler 'wobble' is measured. Credit: ESO

Astronomers have announced plans to build an ultra-stable, high-precision spectrograph for the Science and Technology Facilities Council's 4.2-m William Herschel Telescope (WHT - part of the Isaac Newton Group or ING on La Palma) in an effort to discover habitable Earth-like planets around other stars.

Astronomers have announced plans to build an ultra-stable, high-precision spectrograph for the Science and Technology Facilities Council's 4.2-m William Herschel Telescope (WHT - part of the Isaac Newton Group or ING on La Palma) in an effort to discover habitable Earth-like planets around other stars. Dr Ian Skillen of the ING will present the new High Accuracy Radial-velocity Planet Search - New Earths Facility (HARPS-NEF) spectrograph in a poster on Monday 20th April at the European Week of Astronomy and Space Science conference at the University of Hertfordshire.

Spectrographs analyse the electromagnetic spectrum of light emitted from stars and other objects and allow astronomers to measure properties like velocity and temperature. The super sensitive HARPS-NEF spectrograph is currently under construction by a collaboration between Harvard University's Origins of Life Initiative, New Earths Facility, and the HARPS team of the University of Geneva and is expected to start operation soon after 2010.

A planet and its orbit around a common centre of mass. As a (usually unseen) planet moves its gravitational pull exerts a small reflex motion on the star. The magnitude of this stellar 'wobble' is measured from the resulting Doppler shift imposed on its spectrum. A planet as small as the Earth causes a reflex motion of the Sun of just about 9 cm/sec, which is less than 1 km/hour, or equivalent to the speed of a rather gentle stroll! Other objects such as white dwarfs and stellar companions on the other hand cause a larger reflex motion in excess of 1 km/sec, and so are much easier to identify.

By measuring the wobble of their parent stars, HARPS-NEF will use this technique to discover and characterise Earth-like planets from candidates identified by NASA's Kepler mission, launched on 6th March this year. It will incorporate several improvements on the original HARPS spectrograph at the European Southern Observatory in Chile, most notably the use of a laser frequency grid or 'astro comb', which will provide the ultra-stable wavelength reference against which tiny Doppler motions can be measured with an unparalleled precision of a few cm/s over a period of years.

Kepler will carry out a continuous 4-year survey of more than 100000 stars in the constellations of Cygnus and Lyra. It will search for the small, periodic dips in brightness that result from a planet passing directly in front of the star it orbits in a so-called transit. An Earth-like planet moving in front of its star causes a dip in brightness of about 1 part in 10000 and can last for several hours. However, other objects like the Earth-sized (compact objects that are the end state of stars like the Sun) can mimic this dip. So in conjunction with the Kepler observations, the HARPS-NEF measurements will allow astronomers to calculate both the mass and size of the orbiting objects and confirm them as planets. The mean density (from mass and size) will show if a planet is rocky and dry or rich in water.

But determining the tiny changes in the motions of stars that result from orbiting Earth candidates is a huge challenge. It is the achievement of this precision and stability over many years that makes HARPS-NEF the most advanced facility of its kind in the world.

The scientists believe that the Kepler mission and HARPS-NEF on the WHT together have the real prospect of discovering a number of Earth-like planets capable of supporting life. Professor Dimitar Sasselov (Director, Harvard Origins of Life Initiative and HARPS-NEF project leader) comments, “ A new age of exploration is about to begin, as HARPS-NEF will spy on the new Earths identified by the Kepler mission to show us what they are made of and infer their surface conditions.”

Dr Ian Skillen (ING project scientist for HARPS-NEF) adds, "The discovery of habitable, Earth-like planets orbiting other is now within our grasp. HARPS-NEF will play a fundamental role in this giant step forward in our quest for life elsewhere in the Universe.”

Provided by Royal Astronomical Society (news : web)

Explore further: Quest for extraterrestrial life not over, experts say

add to favorites email to friend print save as pdf

Related Stories

A trio of super-Earths

Jun 16, 2008

Today, at an international conference, a team of European astronomers announced a remarkable breakthrough in the field of extra-solar planets. Using the HARPS instrument at the ESO La Silla Observatory, they ...

Astronomers find potentially habitable Earth-like planet

Apr 25, 2007

Astronomers have discovered the most Earth-like planet outside our Solar System to date, an exoplanet with a radius only 50% larger than the Earth and capable of having liquid water. Using the ESO 3.6-m telescope, ...

Astronomers Find Neptune-Mass Planet Around Small Star

Nov 30, 2005

A team of French and Swiss astronomers have discovered one of the lightest exoplanets ever found using the HARPS instrument on ESO's 3.6-m telescope at La Silla (Chile). The new planet orbits a star belonging ...

Trio of Neptunes and their belt

May 17, 2006

Using the ultra-precise HARPS spectrograph on ESO's 3.6-m telescope at La Silla (Chile), a team of European astronomers have discovered that a nearby star is host to three Neptune-mass planets. The innermost ...

Kepler Set to Launch Tonight on Planet Finding Mission

Mar 06, 2009

(PhysOrg.com) -- The Kepler spacecraft and its Delta II rocket are "go" for a launch tonight that is expected to light up the sky along Florida's Space Coast at 10:49 p.m. EST as the rocket lifts off from ...

Recommended for you

Quest for extraterrestrial life not over, experts say

17 hours ago

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

21 hours ago

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 0

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.