The secret to chimp strength

Mar 30, 2009

February's brutal chimpanzee attack, during which a pet chimp inflicted devastating injuries on a Connecticut woman, was a stark reminder that chimps are much stronger than humans—as much as four-times stronger, some researchers believe. But what is it that makes our closest primate cousins so much stronger than we are? One possible explanation is that great apes simply have more powerful muscles. Indeed, biologists have uncovered differences in muscle architecture between chimpanzees and humans. But evolutionary biologist Alan Walker, a professor at Penn State University, thinks muscles may only be part of the story.

In an article to be published in the April issue of Current Anthropology, Walker argues that humans may lack the strength of chimps because our nervous systems exert more control over our muscles. Our fine motor control prevents great feats of strength, but allows us to perform delicate and uniquely human tasks.

Walker's hypothesis stems partly from a finding by primatologist Ann MacLarnon. MacLarnon showed that, relative to body mass, chimps have much less grey matter in their spinal cords than humans have. Spinal grey matter contains large numbers of —nerves cells that connect to and regulate muscle movement.

More grey matter in humans means more motor neurons, Walker proposes. And having more motor neurons means more muscle control.

Our surplus motor neurons allow us to engage smaller portions of our muscles at any given time. We can engage just a few muscle fibers for delicate tasks like threading a needle, and progressively more for tasks that require more force. Conversely, since chimps have fewer motor neurons, each neuron triggers a higher number of muscle fibers. So using a muscle becomes more of an all-or-nothing proposition for chimps. As a result, chimps often end up using more muscle than they need.

"[A]nd that is the reason apes seem so strong relative to humans," Walker writes.

Our finely-tuned motor system makes a wide variety of human tasks possible. Without it we couldn't manipulate small objects, make complex tools or throw accurately. And because we can conserve energy by using muscle gradually, we have more physical endurance—making us great distance runners.

Great apes, with their all-or-nothing muscle usage, are explosive sprinters, climbers and fighters, but not nearly as good at complex motor tasks. In other words, chimps make lousy guests in china shops.

In addition to fine motor control, Walker suspects that humans also may have a neural limit to how much muscle we use at one time. Only under very rare circumstances are these limits bypassed—as in the anecdotal reports of people able to lift cars to free trapped crash victims.

"Add to this the effect of severe electric shock, where people are often thrown violently by their own extreme muscle contraction, and it is clear that we do not contract all our muscle fibers at once," Walker writes. "So there might be a degree of cerebral inhibition in people that prevents them from damaging their muscular system that is not present, or not present to the same degree, in great apes."

Walker says that testing his hypothesis that humans have more motor neurons would be fairly straightforward. However, he concedes that testing whether humans have increased muscle inhibition could be a bit more problematic.

Source: University of Chicago (news : web)

Explore further: Chimpanzees prefer firm, stable beds

add to favorites email to friend print save as pdf

Related Stories

Does the brain control muscles or movements?

May 07, 2008

One of the major scientific questions about the brain is how it can translate the simple intent to perform an action—say, reach for a glass—into the dynamic, coordinated symphony of muscle movements required for that ...

Finding clues for nerve cell repair

Jun 03, 2008

A new study at the Montreal Neurological Institute at McGill University identifies a key mechanism for the normal development of motor nerve cells (motor neurons) - cells that control muscles. This finding is crucial to understanding ...

Research suggests new direction for ALS treatment

Nov 28, 2007

A research team from Wake Forest University School of Medicine is the first to show that injections of a protein normally found in human cells can increase lifespan and delay the onset of symptoms in mice with ALS (amyotrophic ...

When your brain talks, your muscles don't always listen

Mar 09, 2007

Have your neurons been shouting at your muscles again? It happens, you know. As we grow older, neurons--the nerve cells that deliver commands from our brains--have to "speak" more loudly to get the attention ...

Recommended for you

Chimpanzees prefer firm, stable beds

1 hour ago

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Offspring benefit from mum sending the right message

9 hours ago

(Phys.org) —Researchers have uncovered a previously unforeseen interaction between the sexes which reveals that offspring survival is affected by chemical signals emitted from the females' eggs.

Lemurs match scent of a friend to sound of her voice

23 hours ago

Humans aren't alone in their ability to match a voice to a face—animals such as dogs, horses, crows and monkeys are able to recognize familiar individuals this way too, a growing body of research shows.

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.