Catching the common cold virus genome

Mar 16, 2009

A new study by Brigham Young University researchers on the virus behind nearly half of all cold infections explains how and where evolution occurs in the rhinovirus genome and what this means for possible vaccines.

The study is reported in the April issue of the academic journal .

"There are a lot of different approaches to treating the cold, none of which seem to be effective," said Keith Crandall, professor of biology and co-author of the study. "This is partly because we haven't spent a lot of time studying the virus and its history to see how it's responding to the human and drugs."

The BYU team studied genomic sequences available online and used computer algorithms to estimate how the rhinovirus is related to other viruses.

According to Nicole Lewis-Rogers, a postdoctoral fellow in the Biology Department and lead author on the study, the rhinovirus is similar to the polio virus, whose vaccine was announced in 1955. But while the polio virus has just three , the rhinovirus has more than 100 subspecies, which continually evolve.

"These viruses could be under the same constraints and yet change differently," Lewis-Rogers said. "That's why it is so hard to create a vaccine."

Through a computer program developed at BYU, Lewis-Rogers' team was able to identify the parts of the that enable resistance to drugs and the human immune system.

The immune system does a good job of recognizing viral contaminants and getting rid of them, as do new drugs, but the rhinovirus has responded to these defenses by changing its genome so that it is not so easily recognized.

"The virus is evolving solutions against the immune system and drugs," Crandall said. "The more we can learn about how the virus evolves solutions, the better we can rid the body of these infections."

Understanding where change occurs in the virus genome will help virologists who work to design drugs that target the rhinovirus.

"If you've got 10,000 bits of information, this narrows it down to a handful," Lewis-Rogers said. "Here is where you can start looking."

Lewis-Rogers and Crandall hope scientists will use these insights to build better drugs to combat the virus in the most effective way.

Source: Brigham Young University (news : web)

Explore further: The origins of polarized nervous systems

add to favorites email to friend print save as pdf

Related Stories

Statistical physics shows new approach to fighting viruses

Dec 12, 2005

Computer viruses pose an ongoing threat and their neutralization calls for new strategies, researchers at Tel Aviv University say. Eran Shir and colleagues propose a solution that helps an 'antivirus' program reach an at-risk ...

Recommended for you

The origins of polarized nervous systems

6 hours ago

(Phys.org)—There is no mistaking the first action potential you ever fired. It was the one that blocked all the other sperm from stealing your egg. After that, your spikes only got more interesting. Waves ...

New fat cells created quickly, but they don't disappear

11 hours ago

Once fat cells form, they might shrink during weight loss, but they do not disappear, a fact that has derailed many a diet. Yale researchers in the March 2 issue of the journal Nature Cell Biology descri ...

A single target for microRNA regulation

12 hours ago

It has generally been believed that microRNAs control biological processes by simultaneously, though modestly, repressing a large number of genes. But in a study published in Developmental Cell, a group ...

Sizing up cells: Study finds possible regulator of growth

Mar 02, 2015

Modern biology has attained deep knowledge of how cells work, but the mechanisms by which cellular structures assemble and grow to the right size largely remain a mystery. Now, Princeton University researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.