New method for detecting explosives

Mar 13, 2009

A group of researchers in Tennessee and Denmark has discovered a way to sensitively detect explosives based on the physical properties of their vapors. Their technology, which is currently being developed into prototype devices for field testing, is described in the latest issue of the journal Review of Scientific Instruments, which is published by the American Institute of Physics.

"Certain classes of explosives have unique thermal characteristics that help to identify explosive vapors in presence of other vapors," says Thomas Thundat, a researcher at Oak Ridge National Laboratory (ORNL) and the University of Tennessee who conducted the research with his colleagues at ORNL and the Technical University of Denmark.

In their paper, the scientists show that their technology is capable of trace detection of explosives. They also show that it is capable of distinguishing between explosive and non-explosive chemicals and of differentiating between individual explosives, such as TNT, PETN, and RDX.

Thundat and others have been working on explosive for years. Typical sensors use spectrometers, which ionize tiny amounts of chemicals and measure how fast they move through an electric field. While these instruments are fast, sensitive, and reliable, they are also expensive and bulky, leading many researchers in the last few years to try to find a cheaper, more portable device for detecting explosives.

Much of this research focuses on "micromechanical" devices -- tiny sensors that have on which airborne chemical vapors deposit. When the right chemicals find the surface of the sensors, they induce tiny mechanical motions, and those motions create that can be measured.

These devices are relatively inexpensive to make and can sensitively detect explosives, but they often have the drawback that they cannot discriminate between similar chemicals -- the dangerous and the benign. They may detect a trace amount of TNT, for instance, but they may not be able to distinguish that from a trace amount of gasoline.

Seeking to make a better micromechanical sensor, Thundat and his colleagues realized they could detect explosives selectively and with extremely high sensitivity by building sensors that probed the thermal signatures of chemical vapors.

They started with standard micromechanical sensors -- devices with microscopic cantilevers beams supported at one end. They modified the cantilevers so that they could be electronically heated by passing a current through them. Next they allowed air to flow over the sensors. If explosive vapors were present in the air, they could be detected when molecules in the vapor clung to the cantilevers.

Then by heating the cantilevers in a fraction of a second, they could discriminate between explosives and non-explosives. All the explosives they tested responded with unique and reproducible thermal response patterns within a split second of heating. In their paper, Thundat and his colleagues demonstrate that they could detect very small amounts of adsorbed explosives -- with a limit of 600 picograms (a picogram is a trillionth of a gram). They are now improving the sensitivity and making a prototype device, which they expect to be ready for field testing later this year.

More information: The article "Micro differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges" by Larry R. Senesac et al was published March 4, 2009 [Rev. Sci. Instrum. 80, 035102 (2009)]. The article is available at link.aip.org/link/?RSINAK/80/035102/1 .

Source: American Institute of Physics

Explore further: Could 'Jedi Putter' be the force golfers need?

add to favorites email to friend print save as pdf

Related Stories

Glowing films reveal traces of explosives

May 23, 2008

New spray-on films developed by UC San Diego chemists will be the basis of portable devices that can quickly reveal trace amounts of nitrogen-based explosives.

New fluorescent sensing material created

May 29, 2007

U.S. and Chinese scientists have created a type of fluorescent sensing material that could lead to rapid detection of explosives in security screening.

New defense for terrorism

Sep 04, 2005

The recent terrorism attacks in London and Egypt underscore the need to protect the health and safety of our society. To thwart future attacks, Joe Wang, director of the Center for Biosensors and Bioelectronics at the Biodesign ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.