Biofilms: Even stickier than suspected

Mar 12, 2009
Biofilms: Even stickier than suspected
USC College associate professor of molecular biology Steven Finkel. Photo credit Philip Channing

(PhysOrg.com) -- Biofilms are everywhere - in dental plaque and ear canals, on contact lenses and in water pipelines - and the bacteria that make them get more resilient with age, finds a new study in FEMS Microbiology Letters.

Because in biofilms resist antibiotics, the study may have long-term implications for medical researchers seeking to develop better drugs and less infection-prone devices.

Biofilms are bacterial cities clinging to a surface. In addition to aiding infections, they can hamper industrial processes by clogging pipelines and gumming up machinery.

And as the study shows, biofilms may hold lessons for scholars of evolution.

Authors Steven Finkel and Alison Kraigsley of USC College found evidence of in a single-species bacterial biofilm. Finkel is associate professor of . Kraigsley is a graduate student in Finkel's group.

"The bacteria that originally formed the biofilm are not the same as the bacteria that we harvest from that same biofilm later," Finkel said. "The mutants we find are more fit than the original founding strain."

A 2007 paper by Hansen et al. in the had found evidence of natural selection in , but only in response to competition between species.

The new study shows directly that bacteria in biofilms can evolve as a result of starvation or other external pressures.

"We demonstrate here for the first time that a single species of biofilm-forming bacteria can evolve in response to changing environmental conditions," the authors wrote.

Finkel and Kraigsley incubated biofilms of E. coli bacteria for as long as 33 days, representing potentially hundreds of generations of growth. They then removed bacteria from old biofilms and pitted them against bacteria from very young biofilms.

The goal was to see which group would become dominant through sheer numbers of offspring.

"We never observed one-day-old biofilm-harvested cells outcompeting older cells at any time point," the authors stated.

To guard against the possibility that the older populations might simply be more accustomed to the biofilm environment, rather than genetically different, the researchers placed the cells in a neutral culture for 20 generations before starting the competition.

The cells from the older biofilms still outgrew their competitors, suggesting that the advantage was rooted in their genes.

The microbes' ability to multiply through multiple generations very quickly makes them ideal model systems for the study of natural selection.

The biofilm experiment is a variation on the Finkel group's best-known work: their studies of how starvation of microbes in a closed environment leads to the emergence of a dominant type of cells known as GASP mutants, for Growth Advantage in Stationary Phase.

GASPers, as Finkel calls them, outcompete bacteria from younger cultures. The key is not the age of individual microbes but the age of the culture they come from: young offspring of GASPers exhibit the same dominance as their parents.

Source: University of Southern California (news : web)

Explore further: Fighting bacteria—with viruses

add to favorites email to friend print save as pdf

Related Stories

Biofilms use chemical weapons

Jul 23, 2008

Bacteria rarely come as loners; more often they grow in crowds and squat on surfaces where they form a community together. These so-called biofilms develop on any surface that bacteria can attach themselves ...

Small molecule triggers bacterial community

Dec 22, 2008

While bacterial cells tend to be rather solitary individuals, they are also known to form intricately structured communities called biofilms. But until now, no one has known the mechanisms that cause isolated bacteria to ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0