Turn back, wayward axon

Mar 09, 2009
An elongating axon tip (left) crumples when it encounters RGMa (right). Credit: Hata, K., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200807029.

To a growing axon, the protein RGMa is a "Wrong Way" sign, alerting it to head in another direction. As Hata et al. demonstrate in the March 9, 2009 issue of the Journal of Cell Biology, translating that signal into cellular action requires teamwork from two receptors.

During development, new form when the of one neuron reaches another neuron. As an axon searches out the path to its destination, it bends toward so-called attractive guidance molecules and veers away from repulsive guidance molecules such as . For example, if the tip of an axon touches a glial cell instead of a neuron, the extension pulls back. On its membrane the glial cell sports RGMa, which latches onto the receptor neogenin on the axon. Researchers knew that the interaction between RGMa and neogenin halted the axon by activating the GTPase RhoA. However, they didn't know how neogenin switches on RhoA.

Hata et al. discovered that it gets help from another axon membrane receptor called Unc5B. The researchers found that after a dose of RGMa, the tip of a growing axon halted and often retreated. Eliminating Unc5B prevented this collapse.

Neogenin and Unc5B stick together and serve as coreceptors, performing slightly different tasks, Hata et al. conclude. Neogenin's job is to hook up with RGMa. Unc5B, by contrast, never contacts RGMa. Instead, it serves as a docking point for the RhoA activator LARG. Unc5B indirectly switches on RhoA by interacting with LARG.

But that left one further mystery to explain. LARG clings to Unc5B all the time, so why does it fire up RhoA only in response to RGMa? The researchers found that binding of RGMa prodded another , the focal adhesion kinase (FAK), to switch on LARG, allowing activation of RhoA. How RGMa binding triggers FAK is the next question the researchers want to answer.

More information: www.jcb.org, Hata, K., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200807029.

Source: Rockefeller University

Explore further: Students create microbe to weaken superbug

add to favorites email to friend print save as pdf

Related Stories

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

Bioengineers create functional 3-D brain-like tissue

Aug 11, 2014

Bioengineers have created three-dimensional brain-like tissue that functions like and has structural features similar to tissue in the rat brain and that can be kept alive in the lab for more than two months.

Physicists 'turn signals' for neuron growth

Dec 15, 2011

(PhysOrg.com) -- A new paper scheduled for publication in the January issue of Nature Photonics describes the use of spinning microparticles to direct the growth of nerve fiber, a discovery that could allow ...

Recommended for you

Students create microbe to weaken superbug

9 hours ago

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

Body size requires hormones under control

17 hours ago

The proper regulation of body size is of fundamental importance, but the mechanisms that stop growth are still unclear. In a study now published in the scientific journal eLife, a research group from Instit ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.