Putting the Pressure on Iron-Based Superconductors

Mar 05, 2009 by Kendra Snyder
An iron-based superconductor under pressure

(PhysOrg.com) -- Traditionally, magnetism and superconductivity don't mix. For more than 20 years, the only known superconductors that worked at so-called "high" temperatures (above 30 K, or about -406 degrees Fahrenheit) were almost all based on copper. Materials with strong magnetism, scientists thought, would disrupt the pairing of electrons that is key to achieving the frictionless flow of superconductivity. So when a group of researchers recently found high-temperature superconductivity present in a class of iron-based materials, their discovery shocked and excited the scientific community.

"Many people didn't believe that iron could be an effective superconductor. It went against all prior knowledge," said Haozhe Liu, a professor at the Harbin Institute of Technology, in China. "Now, we've entered the iron age of superconductivity."

Made from conducting layers of iron, arsenic, and various other elements, this new class of materials could lead to applications such as more-efficient power transmission. However, iron-based superconductors are still in the early stages of experimentation and implementation. That why Liu and colleagues from the Chinese Academy of Sciences and the NSLS set out to study the characteristics of a specific iron-and-arsenic-based, neodymium-containing superconductor.

"There is very little information out there right now about this type of superconductor and we want to find out as much as we can about its structure, its behavior, and how it changes under varying conditions," Liu said.

The main objective for scientists in the field is to find superconductors with the highest transition temperature (Tc). Cuprates, also called high-temperature superconductors, hold the record thus far, with transition temperatures reaching up to 138 K (-211 degrees Fahrenheit) - still a far cry from room temperature and impractical for everyday use. In early investigations, the iron-based superconductors studied so far have been shown to have a maximum Tc of 50 K (-370 degrees Fahrenheit).

To find out how Tc is affected by high pressure in the iron-based neodymium arsenide superconductor system, the research team subjected their samples to more than 30 GPa with NSLS beamline X17B3's diamond-anvil cell, a device that uses the polished faces of two diamonds to apply extreme pressure. High pressure can compress the crystalline structure of the material and force its layers closer together, which might increase the material's Tc by improving charge transfer between the layers. To measure this effect, the researchers used angle-dispersive x-ray diffraction. But their findings didn't turn out exactly as expected.

The team's results, which are reported in the October 22, 2008, edition of the Journal of the American Chemical Society, show that as pressure increases from 0 to 15 GPa, the spacing decreases and Tc increases marginally. But as the pressure increases further, one of the other lattice parameters abruptly increases and the Tc drops.

"After a certain point, there is actually a negative relationship between pressure and Tc," Liu said. "This is a new concept and something that could offer insight on how to design and create other superconducting systems."

More information: J. Zhao, L. Wang, D. Dong, Z. Liu, H. Liu, G. Chen, D. Wu, J. Luo, N. Wang, Y. Yu, C. Jin, and Q. Guo, "Structure Stability and Compressibility of Iron-Based Superconductor Nd(O0.88F0.12)FeAs Under High Pressure," JACS, 130 (42), 13828-13829 (2008).

Provided by Brookhaven National Laboratory

Explore further: Using magnetic fields to understand high-temperature superconductivity

add to favorites email to friend print save as pdf

Related Stories

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Researchers develop magnetic levitating gear

Dec 01, 2014

Researchers from Universidad Carlos III de Madrid are developing a new transmission mechanism with no touching parts, based on magnetic forces which prevent friction and wear and make lubrication unnecessary. ...

Refocusing research into high-temperature superconductors

Jul 31, 2014

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

Recommended for you

New insights found in black hole collisions

20 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

20 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

23 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

bredmond
1 / 5 (1) Mar 05, 2009
Harbin Institute of Technology? I live there. I used to teach at their branch school. Wow! small world.
out7x
1 / 5 (2) Mar 06, 2009
Superconductivity in the earths core may explain the strength of the earth's magnetic field. Motions and flips still unpredictable.
Alexa
not rated yet Mar 07, 2009
I don't think so. Magnetic field of planets it's apparently related to presence of fluid, not the superfluid. The cooled planets should be better superconductors, but they've no magnetic field, because their core isn't in molten state.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.