Major step toward less energy loss in new electromagnetic materials

Mar 03, 2009
From physics to mateial analysis and reduced energy losses in society

(PhysOrg.com) -- Researchers at Uppsala University have managed for the first time to measure magnetic properties in new materials quantitatively with the help of electron microscopy - with unparalleled precision. The secret behind the breakthrough is a successful elaboration of electron microscope technology. The findings, published in the scientific journal Physical Review Letters, means that the energy loss entailed in all electromagnetic materials can ultimately be minimized.

Apace with the miniaturization of electronic components, new methods are needed to analyze the properties of materials down to the atomic level. In 2006 a scientific article showed that it is possible to use a transmission electron microscope to study the magnetic properties of a material, using a technique called "Electron Magnetic Circular Dichroism," (EMCD). As different materials are combined, often in thin atomic monolayer films, exciting new magnetic properties are created. This is an interesting research field that is used in hard drives, for example. Today scientists are primarily studying magnetic properties with the aid of an extremely expensive synchrotron light source, whereas EMCD affords a cheaper and considerably more detailed study of the magnetic properties of each layer down to one nanometer.

Until now it has only been shown that EMCD works qualitatively. The Uppsala University researchers have further elaborated the technology to enable it to measure the magnetic forces of the sample quantitatively as well.

"This means we can put a number on the magnetic strength of the sample, which is key to understanding how various materials interact," says Klaus Leifer, professor of experimental physics at the Department of Engineering Sciences.

By combining practical experiments and theoretical calculations, the method of measuring the EMCD signal has now been optimized and the computer processing of the experimental data further developed. The article is the result of collaborative work involving researchers in materials theory, physical materials synthesis, and experimental physics.

These findings are important for our ability to analyze the magnetic properties of a material using equipment that is standard in most electron microscopy laboratories today.

"The technology will also enhance our knowledge of the energy losses that occur in magnetic components in generators and transformers," says Klaus Leifer.

More information: Read the article on the Physical Review Letters Web site.

Provided by Uppsala University

Explore further: Technique simplifies the creation of high-tech crystals

add to favorites email to friend print save as pdf

Related Stories

The physics of lead guitar playing

16 minutes ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

Recommended for you

New approach to form non-equilibrium structures

57 minutes ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

2 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Unleashing the power of quantum dot triplets

6 hours ago

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, ...

Chemist develops X-ray vision for quality assurance

6 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

7 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Pharago
3 / 5 (1) Mar 04, 2009
awesome
BrianH
not rated yet Mar 04, 2009
Argh! The 'more information' Scitation link won't let me see the original!