Stars forced to relocate near the Southern Fish

Mar 03, 2009
The three pictured galaxies -- NGC 7173 (middle left), NCG 7174 (middle right) and NGC 7176 (lower right) -- are part of the Hickson Compact Group 90, named after astronomer Paul Hickson, who first catalogued these small clusters of galaxies in the 1980s. NGC 7173 and NGC 7176 appear to be smooth, normal elliptical galaxies without much gas and dust. In stark contrast, NGC 7174 is a mangled spiral galaxy, barely clinging to independent existence as it is ripped apart by its close neighbors. The strong tidal interaction surging through the galaxies has dragged a significant number of stars away from their home galaxies. These stars are now spread out, forming a tenuous luminous component in the galaxy group. Credit: NASA, ESA and R. Sharples (University of Durham, U.K.)

About 100 million light-years away, in the constellation of Piscis Austrinus (the Southern Fish), three galaxies are playing a game of gravitational give-and-take that might ultimately lead to their merger into one enormous entity.

A new image from the Advanced Camera for Surveys on the NASA/ESA Hubble Space Telescope allows astronomers to view the movement of gases from galaxy to galaxy, revealing the intricate interplay among them.

The three pictured galaxies — NGC 7173 (middle left), NCG 7174 (middle right) and NGC 7176 (lower right) — are part of the Hickson Compact Group 90, named after astronomer Paul Hickson, who first catalogued these small clusters of galaxies in the 1980s. NGC 7173 and NGC 7176 appear to be smooth, normal elliptical galaxies without much gas and dust.

In stark contrast, NGC 7174 is a mangled spiral galaxy, barely clinging to independent existence as it is ripped apart by its close neighbours. The strong tidal interaction surging through the galaxies has dragged a significant number of stars away from their home galaxies. These stars are now spread out, forming a tenuous luminous component in the galaxy group.

Ultimately, astronomers believe that the stars in NGC 7174 will be redistributed into a giant 'island universe', tens to hundreds of times as massive as our own Milky Way.

Source: ESA/Hubble Information Centre

Explore further: Astronomers find 'cousin' planets around twin stars

add to favorites email to friend print save as pdf

Related Stories

How small can galaxies be?

Sep 29, 2014

Yesterday I talked about just how small a star can be, so today let's explore just how small a galaxy can be. Our Milky Way galaxy is about 100,000 light years across, and contains about 200 billion stars. Th ...

Astronomical measurements must account for gravity

Sep 25, 2014

One of the consequences of general relativity is that light can be deflected by nearby masses. Mass curves space, and this curvature causes light to bend slightly. It was first observed during a total eclipse ...

Evidence of gravity waves clouded by interstellar dust

Sep 24, 2014

In March, scientists working on the BICEP2 experiment, a microwave telescope based at the South Pole, announced that they had seen 'gravity waves' from the early universe, created just after the Big Bang. ...

Most metal-poor star hints at universe's first supernovae

Sep 24, 2014

A team of researchers, led by Miho N. Ishigaki, at the Kavli IPMU, The University of Tokyo, pointed out that the elemental abundance of the most iron-poor star can be explained by elements ejected from supernova ...

Recommended for you

How small can galaxies be?

Sep 29, 2014

Yesterday I talked about just how small a star can be, so today let's explore just how small a galaxy can be. Our Milky Way galaxy is about 100,000 light years across, and contains about 200 billion stars. Th ...

The coolest stars

Sep 29, 2014

One way that stars are categorized is by temperature. Since the temperature of a star can determine its visual color, this category scheme is known as spectral type. The main categories of spectral type are ...

Simulations reveal an unusual death for ancient stars

Sep 29, 2014

(Phys.org) —Certain primordial stars—those 55,000 and 56,000 times the mass of our Sun, or solar masses—may have died unusually. In death, these objects—among the Universe's first-generation of stars—would ...

User comments : 0