New clues about mitochondrial 'growth spurts'

Mar 02, 2009
The arrows mark fusing mitochondria in Bcl-xL-lacking cells. Credit: Berman, S.B., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200809060.

Mitochondria are restless, continually merging and splitting. But contrary to conventional wisdom, the size of these organelles depends on more than fusion and fission, as Berman et al. show. Mitochondrial growth and degradation are also part of the equation.

The study will appear online March 2, 2009 and in the March 9, 2009 print issue of The Journal of Cell Biology (JCB).

Fission is necessary to produce new mitochondria, such as those that power synaptic activity in healthy neurons. Fusion is also important. It goes awry in one form of Charcot-Marie-Tooth disease, in which peripheral nerves deteriorate, and in other neurodegenerative diseases. How cells manage mitochondrial size and number remains unclear.

Berman et al. found a clue when they started refining measurements of mitochondrial dynamics. The team labeled the organelles with a red fluorescent protein and a light-activated green fluorescent protein. By switching on the green marker with a laser and then looking for the mixing of colors, the researchers could distinguish mitochondrial mergers from near misses. To their surprise, they found that in healthy neurons, fission occurs up to six times more often than fusion.

So why aren't the cells cluttered with tiny mitochondria? Because the organelles grow longer, the researchers determined. This size increase offsets the higher fission rate. The researchers also surmised that to "balance the books," another process has to be operating—mitochondrial degradation. Together, fusion, fission, growth, and breakdown determine mitochondrial size and shape, Berman et al. propose.

Orchestrating many of these changes is the protein Bcl-xL. The team found that it spurred mitochondrial elongation and sped up fission and fusion. Without Bcl-xL, mitochondria became stumpy and seemingly less energy efficient. Bcl-xL belongs to the Bcl-2 protein family, whose members can protect mitochondria or shatter them to drive apoptosis. Berman et al.'s results suggest that Bcl-xL manages the number, size, and energy-producing capacity of mitochondria long before the cell is faced with a life-or-death decision. Still a mystery, the scientists say, is how Bcl-xL sparks mitochondrial growth.

More information: Berman, S.B., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200809060. www.jcb.org

Source: Rockefeller University Press

Explore further: DNA may have had humble beginnings as nutrient carrier

add to favorites email to friend print save as pdf

Related Stories

Mitochondrial cooperatives

Aug 13, 2013

Mitochondria, the organelles that supply the cell with energy, are highly dynamic and can link up to form complex tubular networks. A new study shows that this response can transiently compensate for a shortfall in energy ...

Team uncovers new functions of mitochondrial fusion

Apr 15, 2010

A typical human cell contains hundreds of mitochondria—energy-producing organelles—that continually fuse and divide. Relatively little is known, however, about why mitochondria undergo this behavior.

Recommended for you

Research helps identify memory molecules

4 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

5 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

5 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0