Desert ants smell their way home

Feb 27, 2009
Cataglyphis fortis

Humans lost in the desert are well known for going around in circles, prompting scientists to ask how desert creatures find their way around without landmarks for guidance. Now research published in BioMed Central's open access journal Frontiers in Zoology shows that Desert Ants input both local smells and visual cues into their navigation systems to guide them home.

Until now researchers thought that the Desert Ant Cataglyphis fortis, which makes its home in the inhospitable salt pans of Tunisia, was a pure vision-guided insect. But Kathrin Steck, Bill Hansson and Markus Knaden from the Max Planck Institute for Chemical Ecology in Jena, Germany used gas chromatography to verify that desert microhabitats do have unique odour signatures that can guide the ants back to the nest.

After having identified some odours of these signatures the researchers trained ants in field experiments to recognise these odours pointing to a hidden nest entrance. Ants learned to associate their nest entrance with a single odour and discriminated the training odour against non-training odours. They even picked out the training odour from a four-odour blend. The ants were less focused when faced with a blend rather than the pure scent of home, but still performed better in their search than those tested with the solvent control.

The use of environmentally derived olfactory landmarks has been shown for pigeons, while most ants rely rather on self generated pheromone trails. However Cataglyphis roams for over 100 meters in search for food in a habitat where high temperatures and changeable food locations make pheromone trails ineffective. This might be the reason, why these ants better go for stable olfactory landmarks that they learn at the nest entrance.

"We are amazed to discover that while keeping track of the path integrator and learning visual landmarks, these ants can also collect information about the olfactory world," said Knaden, who hopes to investigate the interaction between visual and olfactory information in future research.

More information: Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest
Kathrin Steck, Bill S Hansson and Markus Knaden, Frontiers in Zoology (in press), www.frontiersinzoology.com/

Source: BioMed Central

Explore further: Lost sea lion in California found mile from water

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Orchid named after UC Riverside researcher

5 hours ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

7 hours ago

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

7 hours ago

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...