'Silver nanoparticle' microscope may shed new light on cancer, bone diseases

Feb 26, 2009

In a finding that could help speed the understanding of diseases ranging from cancer to osteoporosis, researchers in Utah are reporting development of a new microscope technique that uses “silver nanoparticle” mirrors to reveal hidden details inside bones, cancer cells, and other biological structures. The method also can help identify structural damage in a wide variety of materials, including carbon-fiber plastics used in airplanes, the researchers say.

Their study is scheduled for the March issue of ACS’ Nano Letters.

In the new study, John Lupton and colleagues point out that one of the most powerful, widely used tools for imaging hidden biological structures is fluorescence microscopy, which requires the specimen to be treated with fluorescent dyes or stains. But the dyes used to visualize the structures can kill living cells, limiting the effectiveness of the technique, the researchers note.

The scientists improved on this technique by using an infrared laser to excite clusters of silver nanoparticles, each about 1/5000th the width of a human hair, placed below the material being studied. The particles focus intense beams of light up through the sample to reveal information about the composition and structure of the substance examined, the scientists say. In laboratory studies, they used the new technique to view the iridescent green scales of the so-called “photonic beetle,” whose scales may provide clues to designing new, more powerful solar cells and computer chips, the scientists say.

Provided by ACS

Explore further: A spoonful of sugar in silver nanoparticles to regulate their toxicity

add to favorites email to friend print save as pdf

Related Stories

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Recommended for you

Better separations with customized nanoparticle membranes

Jan 20, 2015

From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.