Scientists discover historic sample of bomb-grade plutonium

Feb 26, 2009

(PhysOrg.com) -- Scientists in Washington state are reporting the surprise discovery of the oldest known sample of reactor-produced bomb-grade plutonium, a historic relic from the infancy of America’s nuclear weapons program. Their research, which also represents the first demonstration of how radioactive sodium can be used as a tool in nuclear forensics, appears in the current issue of ACS’ Analytical Chemistry.

In the new study, Jon Schwantes and colleagues note increased concern about the possibility of terrorists smuggling radioactive materials to make illegal nuclear weapons. As a result, scientists are stepping up efforts to identify and track the source of these radioactive materials using the advanced tools and techniques of a new field called “nuclear archaeology.”

The scientists describe efforts to determine the origin of an unknown sample of plutonium (Pu) found in 2004 in a bottle at a waste burial trench at the Hanford nuclear site in Washington. Hanford is the earliest location for U.S. plutonium production for nuclear weapons and now the focus of a massive environmental cleanup effort due to high levels of radioactive waste that remain at the site.

Using multiple pairs of “parent” Pu and “daughter” uranium (U) isotopes, the researchers were able to correct for chemical fractionation that occurred as a result of repackaging in 2004 and determine the age of the sample. Using this technique, they estimated that the Pu in the sample had been separated from U and fission products in 1944, making it the oldest known sample of bomb-grade plutonium produced in a reactor. The only older known samples of Pu-239 were produced by the late Glenn Seaborg and his associates in the beginning of the 1940's when the existence of the element was first confirmed and characterized.

The study identified the Clinton reactor in Oak Ridge, Tenn., as reactor of origin for this material, by comparing reactor burnup modeling results with measurements of minor Pu isotopes. These results were also supported by a series of historical documents tracking the material's movement from Oak Ridge and the processing at Hanford. “Aside from the historical significance of this find, this work provides the public a rare glimpse at a real-world example of the science behind and power of modern-day nuclear forensics,” the scientists note.

Provided by ACS

Explore further: Beer quality is no froth and bubble

add to favorites email to friend print save as pdf

Related Stories

Experts see Korean parallels in Sony hack

Dec 04, 2014

Some cybersecurity experts say they've found striking similarities between the code used in the hack of Sony Pictures Entertainment and attacks blamed on North Korea which targeted South Korean companies ...

Laser sniffs out toxic gases from afar

Dec 03, 2014

Scientists have developed a way to sniff out tiny amounts of toxic gases—a whiff of nerve gas, for example, or a hint of a chemical spill—from up to one kilometer away.

The extremes of Earth's Late Heavy Bombardment

Sep 29, 2014

On June 30, 1908 a bolide streaked across the sky in the region near the Podkamennaya Tunguska River in Russia. When it exploded, the airburst leveled more than 2,000 square kilometers of trees. It is now ...

UK team unlocking secrets of North Korea volcano

Sep 03, 2014

More than a thousand years ago, a huge volcano straddling the border between North Korea and China was the site of one of the biggest eruptions in human history, blanketing eastern Asia in its ash. But unlike ...

Recommended for you

'Global positioning' for molecules

11 hours ago

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.