Study Finds 'Pre-Existing Condition' Fueled Killer Cyclone

Feb 26, 2009
In early May 2008, Cyclone Nargis passed over Burma (Myanmar) after forming in the Bay of Bengal.

(PhysOrg.com) -- A "pre-existing condition" in the North Indian Ocean stoked the sudden intensification of last year's Tropical Cyclone Nargis just before its devastating landfall in Burma, according to a new NASA/university study. The cyclone became Burma's worst natural disaster ever and one of the deadliest cyclones of all time.

Scientists at the National Taiwan University, Taipei; and NASA's Jet Propulsion Laboratory, Pasadena, Calif., used data from satellite altimeters, measurements of ocean depth and temperature and an ocean model to analyze the ocean conditions present at the time of the catastrophic storm. Nargis intensified from a relatively weak category 1 storm to a category 4 monster during its final 24 hours before making landfall on May 2, 2008.

Lead author I-I Lin of National Taiwan University and her team found the ocean conditions Nargis encountered created the perfect recipe for disaster. Cyclones thrive on warm layers of ocean water that are at least 26 degrees Celsius (79 degrees Fahrenheit). As they traverse the ocean, they typically draw deep, cold water up to the ocean surface, a process that limits their ability to strengthen, and even weakens them as they evolve. However, Nargis passed over a pre-existing warm ocean feature in the Bay of Bengal where upper ocean warm waters extended deeper than normal, from 73 to 101 meters (240 to 331 feet).

"This abnormally thick, warm water layer, which formed about a month earlier, kept deeper, colder waters from being drawn to the surface, increasing the energy available to fuel Nargis' growth by 300 percent," said Lin. "Combined with other atmospheric conditions conducive to strengthening, this warm ocean feature allowed Nargis to reach speeds of 115 knots [213 kilometers, or 132 miles, per hour] at landfall. Had Nargis not encountered this warm ocean feature, it would likely not have had sufficient energy to intensify rapidly."

Nargis' rapid intensification occurred predominantly over warm ocean regions where sea surface temperatures ranged between 30 and 30.2 degrees Celsius (about 86 degrees Fahrenheit) and sea surface heights ranged from 6 to 20 centimeters (2.4 to 7.9 inches) above normal. Between May 1 and 2, 2008, the storm intensified from category 1 to category 4. When Nargis briefly passed outside the warm ocean region on May 2, it weakened somewhat, only to strengthen once again as it returned to the warm ocean feature. Warm ocean features in the Gulf of Mexico contributed to the rapid intensification of hurricanes Katrina and Rita in 2005.

Lin said the research will contribute to improving our understanding of and ability to forecast catastrophic events like Nargis in the future, reducing loss of life and property. "Such a capability is particularly needed in developing countries, where less advanced cyclone monitoring and warning systems can leave people with little time to escape from disaster," she said.

The scientists compared the thermal structure of the upper ocean waters within the warm ocean feature during the storm with its thermal structure under normal climatological conditions. Study data came from the international Argo float program, NASA's Jason-1 satellite, the European Space Agency's Environmental Satellite, the U.S. Navy's GEOSAT Follow-On satellite and NOAA's Global Temperature and Salinity Profile Program data base. The satellite data were used to derive the upper ocean thermal structure for regions where no suitable direct measurements were available.

"This research demonstrates a significant potential benefit of using altimeter data for operational weather forecasting and tropical cyclone intensity predictions," said study co-author Tim Liu of JPL. "Current hurricane analyses include variations in ocean heat, which can be revealed by ocean altimeters. Satellites like NASA's Jason-1 and Ocean Surface Topography Mission/Jason-2 make important contributions to the operational monitoring and prediction of tropical cyclones, as have other NASA satellites."

Results of the study were published this month in Geophysical Research Letters.

Provided by NASA

Explore further: A 5.3-million-year record of sea level and temperature

add to favorites email to friend print save as pdf

Related Stories

NASA's OCO-2 brings sharp focus on global carbon

Apr 03, 2014

Simply by breathing, humans have played a small part in the planet-wide balancing act called the carbon cycle throughout our existence. However, in the last few hundred years, we have taken a larger role. ...

Eel expedition 2014 has arrived in The Sargasso Sea

Mar 20, 2014

The research vessel Dana is currently in the Sargasso Sea on an intensive research expedition to the European eel's spawning grounds subsequently following the eel larvae's drift back to Europe. The Sargasso ...

Recommended for you

Melting during cooling period

7 hours ago

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Warm US West, cold East: A 4,000-year pattern

10 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

New study outlines 'water world' theory of life's origins

12 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

User comments : 0

More news stories

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...