Researchers isolate and purify mouse heart stem cells

Feb 26, 2009 By Krishna Ramanujan
This image shows isolated, beating green heart stem cells in culture.

(PhysOrg.com) -- A pioneering Cornell and University of Bonn study has isolated and purified mouse heart stem cells, settling a debate over whether such cells exist.

The findings, published online and in an upcoming issue of the Proceedings of the National Academy of Sciences, could allow researchers to better understand whether genes can spur heart stem cells to fully differentiate into new cells after a heart attack.

The researchers, led by Michael I. Kotlikoff, the Austin O. Hooey Dean of Veterinary Medicine at Cornell, used a green fluorescent protein to label mouse heart precursor (or stem) cells and identify the cells during embryo development and immediately following birth. The fluorescent protein label also revealed that the number of cells, which differentiate into all three heart cell types (cardiac, endothelial and smooth muscle), decline drastically soon after birth.

The new method could be used to quickly and rapidly isolate and purify both heart and other stem cell populations in the laboratory; to study gene expression that leads to these cells differentiating into other cell types; to track the timing of these cells and when and where they differentiate into other cell types in vivo; and to compare heart stem cells with other types of stem cells.

"The existence of cardiac stem cells and the ability of adult stem cells to form new heart muscle have been the subject of much scientific disagreement, as there are so few of these cells in the adult heart," said Kotlikoff, who co-authored the study with Yvonne Tallini, a Cornell research scientist in biomedical sciences, and Bernd Fleischmann of the University of Bonn.

"We now have a simple way to identify these cells within the heart and to isolate and study the factors that control their fate," Kotlikoff added.

Researchers had questioned the existence of these cells, because the heart has very little regenerative capacity after an infarction, which creates a permanent scar. To address this question, the group looked for the cells after heart infarction, and found that heart stem cells form vessels that invade the scar tissue, but do not form new heart cells. Heart cells surrounding the dead tissue express a protein marker for these stem cells at low levels, suggesting that they are attempting to respond to grow new heart cells after an injury, but the response is incomplete. This may explain the detection of these cells after an injury, but their failure to re-grow new heart tissue.

Provided by Cornell University

Explore further: Researchers produce first atlas of airborne microbes across United States

Related Stories

Researchers use silk to cultivate organ tissues in the lab

Apr 02, 2015

Few organs in the body are as complicated as the human brain, a tight spiderweb of neurons that shoots electrical signals across synapses to control all our thoughts and movements. When something goes wrong—as ...

Novel tissue substitute made of high-tech fibers

Apr 01, 2015

Regenerative medicine uses cells harvested from the patient's own body to heal damaged tissue. Fraunhofer researchers have developed a cell-free substrate containing proteins to which autologous cells bind ...

Measuring the pulse of trees

Mar 16, 2015

I read many years ago that if you wanted a tree to recognise you, you would need to sit quietly at its base for a week. Very Zen!

Recommended for you

Vascular cells can fuse with themselves

13 hours ago

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. ...

Key element in bacterial immune system discovered

14 hours ago

A University of Otago scientist is a member of an international research team that has made an important discovery about the workings of a bacterial immune system. The finding could lead to the development ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.