Micro-RNAs Are Life’s Genetic Sculptors

Feb 26, 2009
When a micro-RNA is removed, genes governing muscle development shown in blue are activated within the embryo (IMAGE A). In the presence of micro-RNA, the genes are inactive (IMAGE B).

(PhysOrg.com) -- Yale scientists have found a way to study within a living organism the wonders of micro-RNAs - tiny bits of RNA that act like a sculptor and shape the activity of hundreds of genes. The work is reported in the March 1 edition of the journal Genes & Development.

The analysis of micro-RNA in the developing muscle tissue of a zebra fish embryo sheds new light on research and therapeutic potential of these tiniest of all genes, the authors say.

Micro-RNAs (miRNAs), snippets of genetic material usually associated with the production of proteins from DNA, are one of the hottest targets of scientific research because they can precisely regulate the activity of many important genes. So far, most researchers have studied their effects only in cell cultures and have found it difficult to map the extent of their influence throughout a living organism.

The Yale study, however, illustrates that two miRNAs influence the gene activity of hundreds of muscle genes to regulate the muscle contraction apparatus in the developing zebra fish embryo. They act like ubiquitous chisels, carving away material suppressing the expression of genes in precise parts of an organism, said Antonio J. Giraldez, the Lois and Franklin H. Top, Jr. Yale Scholar in the genetics department of the Yale School of Medicine and senior author of the study. But some genes are turned on in their absence, allowing for the precise development of muscle tissue.

“It is as if these micro-RNAs are putting the final touch on evolution’s artwork,’’ Giraldez said.

Micro-RNAs are the smallest genes known, with only 22 building blocks or nucleotides, while most genes average more than 1000 nucleotides. Unlike most genes that are encoded as DNA and produce proteins, these tiny genes act by controlling much larger messenger RNAs, which carry the protein-making instructions of the DNA. Although micro-RNAs account for only about four percent of genes, each one can regulate hundreds of genes.

“It is likely that microRNAs have deep implications not only in how humans and animals are made, but in the development of human diseases,” said Giraldez.

For instance, the same miRNAs that in this study regulate muscle function during development can also modify the metastatic potential of tumor cells in mice.

Other Yale researchers on the paper were lead author Yuichiro Mishima, Alison A. Staton, Carlos Stahlhut, Chong Shou, Chao Cheng, and Mark Gerstein.

The Muscular Dystrophy Association, Ms. Louis and Dr. Franklin Top Jr. and the Yale Scholar Program funded the study.

Citation: Genes & Development, March 1, 2009

Provided by Yale University

Explore further: Researchers identify new mechanism to aid cells under stress

add to favorites email to friend print save as pdf

Related Stories

The epigenetic switchboard

Jan 12, 2015

Epigenetic signals help determine which genes are activated at which time in a given cell. A novel analytical method enables systematic characterization of the relevant epigenetic tags, and reveals that the ...

More arginine yields little growth effect

Jan 09, 2015

While additional arginine increases muscle mass and reduces visceral fat in pigs and rodents, the same additive does not induce faster growth in farmed salmon. Still, the amino acid may benefit salmon health ...

Reshaping the horse through millennia

Dec 15, 2014

Whole genome sequencing of modern and ancient horses unveils the genes that have been selected by humans in the process of domestication through the latest 5.500 years, but also reveals the cost of this domestication. ...

Recommended for you

Researchers identify new mechanism to aid cells under stress

18 hours ago

A team of biologists from NYU and Harvard has identified new details in a cellular mechanism that serves as a defense against stress. The findings potentially offer insights into tumor progression and neurodegenerative diseases, ...

Researchers image and measure tubulin transport in cilia

19 hours ago

Defective cilia can lead to a host of diseases and conditions in the human body—from rare, inherited bone malformations to blindness, male infertility, kidney disease and obesity. Scientists knew that somehow ...

Researchers find unusually elastic protein

22 hours ago

Scientists at Heidelberg University have discovered an unusually elastic protein in one of the most ancient groups of animals, the over 600-million-year-old cnidarians. The protein is a part of the "weapons system" that the ...

How malaria-spreading mosquitoes can tell you're home

Jan 22, 2015

Females of the malaria-spreading mosquito tend to obtain their blood meals within human dwellings. Indeed, this mosquito, Anopheles gambiae, spends much of its adult life indoors where it is constantly expose ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.