Microfluidic Device Mimics Tumor Microenvironment, Helps Drug Discovery Efforts

Feb 23, 2009

One of the challenges that cancer researchers face in designing new antitumor agents is that of predicting how drug molecules will behave in the complex microenvironment that surrounds a tumor. In particular, tumors create all sorts of chemical and physical barriers that limit how much drug is able to enter a tumor, let alone reach cells deep within a tumor. Now, Neil Forbes, Ph.D., and his colleagues at the University of Massachusetts have built a microfluidic device that can mimic these chemical and physical barriers, providing researchers with a new screening tool that may help with the design of more effective anticancer drugs.

Dr. Forbes and his colleagues, who reported their findings in the journal Lab on a Chip, designed this device to reproduce the three-dimensionality of a tumor, including areas of low pH and regions that contain cells resistant to therapy. To create this device, the investigators tested seven different cell growth chamber designs, using various imaging technologies to determine how closely cell masses growing in the device mimicked the behavior of a tumor. From these experiments, the investigators were able to select a growth chamber design that caused cells to grow into tumor masses that displayed heterogeneity closely resembling that of native tumors.

The investigators then used the device to study how doxorubicin, a widely used and widely studied anticancer drug, diffuses into and through a tumor. The device accurately modeled doxorubicin diffusion as seen in humans treated with this drug. The device also was able to recreate the accumulation patterns of anticancer bacteria that actively penetrate a tumor.

This work was detailed in the paper “A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics.” An abstract of this paper is available at the journal’s Web site.

Provided by National Cancer Institute

Explore further: New tool identifies therapeutic proteins in a 'snap'

add to favorites email to friend print save as pdf

Related Stories

New device promises safer way to deliver powerful drugs

Apr 06, 2011

A new drug delivery device designed and constructed by Jie Chen, Thomas Cesario and Peter Rentzepis promises to unlock the potential of photosensitive chemicals to kill drug-resistant infections and perhaps cancer tumors ...

Anti-tumor drugs tested by microfluidic device

Oct 05, 2010

A prototype device developed in Hong Kong will allow laboratory researchers to non-invasively test drugs for their ability to kill tumors by subjecting cancerous cells with different concentration gradients. The new device ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

Aug 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Feb 24, 2009
MITOSIS RATE is sensitive to as little as ONE DEGREE
CELSIUS! REDUCE THE TEMPERATURE AND YOU REDUCE THE RATE! I have tested this in fish and my own body. IF YOU COOL THE TUMOR IT WILL SHRINK! (An established tumor may require 10 degrees below body temp.)