Microfluidic Device Mimics Tumor Microenvironment, Helps Drug Discovery Efforts

Feb 23, 2009

One of the challenges that cancer researchers face in designing new antitumor agents is that of predicting how drug molecules will behave in the complex microenvironment that surrounds a tumor. In particular, tumors create all sorts of chemical and physical barriers that limit how much drug is able to enter a tumor, let alone reach cells deep within a tumor. Now, Neil Forbes, Ph.D., and his colleagues at the University of Massachusetts have built a microfluidic device that can mimic these chemical and physical barriers, providing researchers with a new screening tool that may help with the design of more effective anticancer drugs.

Dr. Forbes and his colleagues, who reported their findings in the journal Lab on a Chip, designed this device to reproduce the three-dimensionality of a tumor, including areas of low pH and regions that contain cells resistant to therapy. To create this device, the investigators tested seven different cell growth chamber designs, using various imaging technologies to determine how closely cell masses growing in the device mimicked the behavior of a tumor. From these experiments, the investigators were able to select a growth chamber design that caused cells to grow into tumor masses that displayed heterogeneity closely resembling that of native tumors.

The investigators then used the device to study how doxorubicin, a widely used and widely studied anticancer drug, diffuses into and through a tumor. The device accurately modeled doxorubicin diffusion as seen in humans treated with this drug. The device also was able to recreate the accumulation patterns of anticancer bacteria that actively penetrate a tumor.

This work was detailed in the paper “A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics.” An abstract of this paper is available at the journal’s Web site.

Provided by National Cancer Institute

Explore further: The most complete review of the peptide behind Alzheimer's

Related Stories

New nanodevice defeats drug resistance

Mar 02, 2015

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by MIT researchers can help overcome that by first blocking ...

3-D printers to make human body parts? It's happening

Feb 04, 2015

It sounds like something from a science fiction plot: So-called three-dimensional printers are being used to fashion prosthetic arms and hands, jaw bones, spinal-cord implants - and one day perhaps even living human body ...

Origami—mathematics in creasing

Jan 07, 2015

Origami is the ancient Japanese art of paper folding. One uncut square of paper can, in the hands of an origami artist, be folded into a bird, a frog, a sailboat, or a Japanese samurai helmet beetle. Origami can be extraordinarily complicat ...

New device promises safer way to deliver powerful drugs

Apr 06, 2011

A new drug delivery device designed and constructed by Jie Chen, Thomas Cesario and Peter Rentzepis promises to unlock the potential of photosensitive chemicals to kill drug-resistant infections and perhaps cancer tumors ...

Recommended for you

SANS: a unique technique to look inside plants' leaves

Mar 26, 2015

Plants' leaves capture the sunlight and convert it into the energy used to produce nutrients for their activities. This process is accomplished thanks to the presence of the thylakoid membrane system. While ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Feb 24, 2009
MITOSIS RATE is sensitive to as little as ONE DEGREE
CELSIUS! REDUCE THE TEMPERATURE AND YOU REDUCE THE RATE! I have tested this in fish and my own body. IF YOU COOL THE TUMOR IT WILL SHRINK! (An established tumor may require 10 degrees below body temp.)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.