Patience pays off with methanol for uranium bioremediation

Feb 23, 2009

The legacy of nuclear weapons and nuclear energy development has left ground water and sediment at dozens of sites across the United States and many more around the world contaminated with uranium. The uranium is transported through ground water as uranyl (U6+).

In one bioremediation strategy, uranium immobilization in contaminated ground water and sediment may be achieved by the addition of organic molecules known as electron donors to stimulate microbial activity. The microbial community utilizes the electron donors as 'food', consuming all of the available oxygen during aerobic respiration. Once the ground water becomes anaerobic, U6+ may be converted to U4+ as UO2, a solid mineral, sequestering the uranium within the sediment. Researchers have been investigating the effectiveness of various electron donors, but have been frustrated by residual U6+ which is not converted to insoluble U4+.

A team of scientists from Oak Ridge National Laboratory has investigated effectiveness of several electron donors for uranium bioremediation in a study funded by the Department of Energy's Environmental Remediation Sciences Program. Madden et al. report that the particular electron donor chosen affects not only the rate of uranium removal from solution, but also the extent of U6+ conversion to U4+. Results of the study were published in the January-February issue of the Journal of Environmental Quality.

Microcosm experiments containing uranium-contaminated sediment and ground water demonstrated equivalent rapid uranium reduction when amended with ethanol or glucose. In contrast, reduction was delayed by several days when microcosms were amended with methanol. Spectroscopic analyses of uranium oxidation state in stimulated microcosm sediment slurries demonstrated almost complete uranium reduction when methanol was the donor, as compared with less than half reduced using ethanol or glucose. However, addition of methanol did not always result in uranium reduction. These results suggest that the use of donors such as methanol which are not as readily and rapidly coupled to microbial metal reduction may lead to increased stability of the subsurface towards uranium immobilization.

Research is ongoing at Oak Ridge National Laboratory to investigate the effectiveness of various electron donors for long-term uranium immobilization. Further research is needed to understand the coupling between the microbial community and the biogeochemical processes that occur to immobilize the uranium. While previous research has focused on individual groups of bacteria which most efficiently reduce uranium, these results suggest the need for understanding the microbial community system.

More information: jeq.scijournals.org/cgi/content/abstract/38/1/53

Source: Crop Science Society of America

Explore further: Severe changes in world's leaf growth patterns over past several decades revealed

add to favorites email to friend print save as pdf

Related Stories

Malaria transmission linked to mosquitoes' sexual biology

59 minutes ago

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Fighting the Colorado potato beetle with RNA interference

59 minutes ago

Colorado potato beetles are a dreaded pest of potatoes all over the world. Since they do not have natural enemies in most potato producing regions, farmers try to control them with pesticides. However, this ...

Recommended for you

Did climate change help spark the Syrian war?

4 hours ago

A new study says a record drought that ravaged Syria in 2006-2010 was likely stoked by ongoing manmade climate change, and that the drought may have helped propel the 2011 Syrian uprising. Researchers say ...

Pollution documentary attracts huge interest in China

9 hours ago

A slick new documentary on China's environmental woes has racked up more than 175 million online views in two days, underscoring growing concern in the country over the impact of air, water and soil pollution.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (1) Feb 26, 2009
there are ocean bacteria that metabolize uranium to insoluble compounds

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.