Landmark Study Finds Industrial Chicken Breeds Seriously Lack Genetic Diversity

Feb 19, 2009

(PhysOrg.com) -- Commercial chicken breeds used to produce meat and eggs around the world have lost at least half of the genetic diversity once present among their ancestors, according to a study conducted by an international team of researchers that includes a UC Davis animal scientist.

The study is the first experimental analysis of genetic diversity for an entire agricultural commodity. It raises concerns over whether the genetic diversity of commercial flocks is sufficient to deal with future challenges.

The global poultry industry produces more than 40 billion birds for meat and eggs annually and has grown rapidly during the past 50 years, leading to intensive selection for traits such as size and egg production. As the industry has become more concentrated in a smaller number of firms, inbreeding and loss of genetic diversity have increasingly become concerns.

“The results of our analysis reaffirm the importance of maintaining a healthy genetic reservoir for chickens, as well as all other food-producing animals, through preservation and conservation,” said Mary Delany, chair of the UC Davis Department of Animal Science and co-author on the study. The findings were published in the Nov. 3, 2008, issue of the Proceedings of the National Academy of Sciences.

“It is crucial that breeders be able to readily access the genetic resources that will enable our flocks to cope with new and recurring diseases, environmental changes, new flock-management practices and even changes in consumer preference,” Delany said. “Biotechnology has great potential to introduce beneficial traits without sacrificing other genetic gains,” she said.

Using the sequence of the chicken genome, published in 2004 based on a UC Davis inbred chicken line called the Red Jungle Fowl, the researchers used a method called single nucleotide polymorphisms or SNP to measure biodiversity among existing chickens. They sampled DNA from more than 2,500 chickens, more than half from commercial flocks, and checked for gene variations that were present in the larger population but missing from the commercial breeds.

The study was led by Hans Cheng of the U.S. Department of Agriculture. Other collaborators on the study were from Purdue University; the University of Alberta, Canada; the Beijing Institute of Genomics; Wageningen University, Netherlands; Cobb-Vantress Inc., Arkansas; Hendrix Genetics, Netherlands; and Illumina Inc., California.

Provided by UC Davis

Explore further: Aggressive conifer removal benefits Sierra aspen

add to favorites email to friend print save as pdf

Related Stories

Nations "failing to save earth's wildlife"

Nov 11, 2014

The world can dramatically improve the rate at which it rescues imperilled species if it starts choosing the land set aside as protected areas more wisely, international scientists say.

How mutualisms evolve in a world of selfish genes

Nov 11, 2014

Reproduction for a female fig wasp can be a nightmarish process. When she is ready to lay her eggs, she leaves the fig in which she was born and became pregnant and searches for another. After she finds it, ...

Recommended for you

Evolution: The genetic connivances of digits and genitals

8 hours ago

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Study: Volunteering can help save wildlife

9 hours ago

Participation of non-scientists as volunteers in conservation can play a significant role in saving wildlife, finds a new scientific research led by Duke University, USA, in collaboration with Wildlife Conservation ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Corban
not rated yet Feb 19, 2009
In mass production, variation is a risk, not a strength. Is it any wonder that extreme mass production has yielded extreme homogeneity?
Choice
not rated yet Feb 26, 2009
Perhaps this is so vis a vis inanimate production. With living organisms, a lack of genetic diversity means 'putting all your eggs in one basket'. One supervirulent strain and pow!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.