Chemists create two-armed nanorobotic device to maneuver world's tiniest particles

Feb 15, 2009

Chemists at New York University and China's Nanjing University have developed a two-armed nanorobotic device that can manipulate molecules within a device built from DNA. The device is described in the latest issue of the journal Nature Nanotechnology.

"The aim of nanotechnology is to put specific atomic and molecular species where we want them and when we want them there," said NYU Chemistry Professor Nadrian Seeman, one of the co-authors. "This is a programmable unit that allows researchers to capture and maneuver patterns on a scale that is unprecedented."

The device is approximately 150 x 50 x 8 nanometers. A nanometer is one billionth of a meter. Put another way, if a nanometer were the size of a normal apple, measuring approximately 10 centimeters in diameter, a normal apple, enlarged proportionally, would be roughly the size of the earth.

The creation enhances Seeman's earlier work—a single nanorobotic arm, completed in 2006, marking the first time scientists had been able to employ a functional nanotechnology device within a DNA array.

The new, two-armed device employs DNA origami, a method unveiled in 2006 that uses a few hundred short DNA strands to direct a very long DNA strand to form structures that adopt any desired shape. These shapes, approximately 100 nanometers in diameter, are eight times larger and three times more complex than what could be created within a simple crystalline DNA array.

As with Seeman's previous creation, the two-armed nanorobotic device enables the creation of new DNA structures, thereby potentially serving as a factory for assembling the building blocks of new materials. With this capability, it has the potential to develop new synthetic fibers, advance the encryption of information, and improve DNA-scaffolded computer assembly.

In the two-armed nanorobotic device, the arms face each other, ready to capture molecules that make up a DNA sequence. Using set strands that bind to its molecules, the arms are then able to change the structure of the device. This changes the sticky ends available to capture a new pattern component.

The researchers note that the device performs with 100 percent accuracy. Earlier trials revealed that it captured targeted molecules only 60 to 80 percent of the time. But by heating the device in the presence of the correct species, they found that the arms captured the targeted molecules 100 percent of the time.

They confirmed their results by atomic force microscopy (AFM), which permits features that are a few billionths of a meter to be visualized.

Source: New York University

Explore further: Scientists use simple, low cost laser technique to improve properties and functions of nanomaterials

add to favorites email to friend print save as pdf

Related Stories

Nanophotonics experts create powerful molecular sensor

Jul 15, 2014

(Phys.org) —Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could ...

Molecular snapshots of oxygen formation in photosynthesis

Jul 11, 2014

Researchers from Umeå University, Sweden, have explored two different ways that allow unprecedented experimental insights into the reaction sequence leading to the formation of oxygen molecules in photosynthesis. ...

Postcards from the photosynthetic edge

Jul 09, 2014

A crucial piece of the puzzle behind nature's ability to split the water molecule during photosynthesis that could help advance the development of artificial photosynthesis for clean, green and renewable ...

Recommended for you

A crystal wedding in the nanocosmos

4 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Vienna University of Technology and the Maria Curie-Skłodowska University Lublin have succeeded in embedding nearly perfect semiconductor ...

PPPL studies plasma's role in synthesizing nanoparticles

Jul 22, 2014

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 0