SanDisk, Toshiba Develop 32-nanometer NAND Flash Technology

Feb 11, 2009
SanDisk, Toshiba Develop 32-nanometer NAND Flash Technology

SanDisk and Toshiba today announced the co-development of multi-level cell (MLC) NAND flash memory using 32-nanometer process technology to produce a 32-gigabit (Gb) 3-bits-per-cell (X3) memory chip. The breakthrough introduction is expected to quickly bring to market advanced technologies that will enable greater capacities and reduce manufacturing costs for products ranging from memory cards to Solid State Drives (SSD).

“The development of our third-generation 3-bits-per-cell technology on 32nm within one and a half years after the introduction of the first generation of 3-bits-per-cell on 56nm shows the incredibly fast pace necessary to be a world-class producer in today’s industry,” said Sanjay Mehrotra, co-founder and president, SanDisk. “This allows us to offer higher capacities at compelling form factors while reducing manufacturing costs.”

The 32Gb X3 on 32nm technology is the smallest NAND flash memory die reported so far, able to fit into the fingernail-sized microSD™ memory card format that has enjoyed widespread adoption in mobile phones and other consumer electronics devices. The 32nm 32Gb X3 is the highest density microSD memory die in the world, providing twice the capacity of a microSD chip on 43nm while still maintaining a similar die area. Advances in 32nm process technologies and in circuit design significantly contributed to a 113mm2 die-size while SanDisk’s patented All-Bit-Line (ABL) architecture has been a key enabler to maintain a competitive X3 write performance.

“The 32nm X3 die’s small footprint and incredible density will allow for the production of higher capacities of microSD cards than could be manufactured without this technology,” said Yoram Cedar, executive vice president, OEM business unit and corporate engineering, SanDisk. “The microSD form factor has grown in popularity due to rising demand for high capacity storage on mobile phones, and X3 will enable us to bring exciting new products to this market.”

32nm is the most advanced flash memory technology node to date, requiring advanced solutions to manage the challenges of feature size scaling. 32nm technology combines several innovative technologies to reduce die area more aggressively than the trend-line of Moore’s Law.

SanDisk and Toshiba today presented a joint paper on 32nm 32Gb X3 NAND flash memory at the 2009 International Solid State Circuits Conference (ISSCC), highlighting the technical advancements that made 32nm possible. Production for the 32nm 32Gb X3 is expected to begin in the second half of 2009.

Provided by Sandisk

Explore further: A nanosized hydrogen generator

add to favorites email to friend print save as pdf

Related Stories

New complex oxides could advance memory devices

Sep 17, 2014

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

Rice's silicon oxide memories catch manufacturers' eye

Jul 10, 2014

(Phys.org) —Rice University's breakthrough silicon oxide technology for high-density, next-generation computer memory is one step closer to mass production, thanks to a refinement that will allow manufacturers ...

A new multi-bit 'spin' for MRAM storage

Jul 22, 2014

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

Samsung introduces new branded SSD powered by 3D V-NAND

Jul 01, 2014

Samsung Electronics today launched the 850 PRO, a new solid state drive (SSD) line-up featuring Samsung's cutting-edge three-dimensional (3D) vertical NAND (V-NAND) flash memory technology. The new Samsung ...

Recommended for you

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0