Actinide research published in Reviews of Modern Physics

Feb 11, 2009

(PhysOrg.com) -- A Livermore researcher who teamed with a United Kingdom collaborator has published an article in Reviews of Modern Physics that refines decades of actinide science and may just become the preeminent research paper in the field.

Kevin Moore of LLNL and Gerrit van der Laan at the Diamond Light Source in the United Kingdom wrote “Nature of the 5f States in Actinide Metals,” which describes the electronic, magnetic and crystal structure of actinides and demonstrates the importance of actinide science to a broad class of scientists. It appears in the Feb. 6 edition of Reviews of Modern Physics.

Actinides encompass the 15 chemical elements that lie between actinium and lawrencium included on the periodic table, with atomic numbers 89-103. The actinide series derives its name from the first element in the series, actinium. The 5f states are complicated electron wave functions.

Reviews of Modern Physics is the premier journal for physics research. It is the fifth highest ranked journal out of all fields and only publishes 32 invited papers a year. Each year, one or more of the invited papers are used in part as acceptance speeches for the Nobel Prize in physics.

Moore and van der Laan’s paper points out that the heaviest actinides have almost no experimental data, generating only a rudimentary level of understanding.

“The actinide series as a whole is modestly understood, with the level of comprehension decreasing with atomic number,” Moore said.

While theoretical work on the actinides is substantial, the lack of experiments is due to the toxic and radioactive nature of the materials, which makes handling difficult and expensive. In addition, the cost of the materials themselves is exceedingly high, meaning experiments that need a large amount of materials further increase the expense of research.

Progress in understanding the theoretical calculations has its limits as well. It’s been hampered by the extreme difficulty of the physics and the lack of a healthy body of experimental data from which to validate the theory.

However, Moore and van der Laan explain the progress in understanding the electronic structure of the 5f states in the actinide metal series by sifting through decades of research in the theoretical and experimental fields and condensing the data in a definitive article on actinide science.

“This establishes LLNL as a frontrunner in actinide science and highlights the work done at defense labs by having that research in a world-class journal,” Moore said.

Provided by Lawrence Livermore National Laboratory

Explore further: Galaxy dust findings confound view of early Universe

add to favorites email to friend print save as pdf

Related Stories

Super Bowl athletes are scientists at work

Jan 30, 2015

Seattle Seahawks cornerback Richard Sherman gets called a lot of things. He calls himself the greatest cornerback in the NFL (and Seattle fans tend to agree). Sportswriters and some other players call him ...

Battery recipe: Deep-fried graphene pom-poms

Jan 19, 2015

In Korea, the work of materials scientists is making news worldwide this week, following publication of their article, "Spray-Assisted Deep-Frying Process for the In Situ Spherical Assembly of Graphene for ...

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

Building the next generation of efficient computers

Jan 29, 2015

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.