Nanotube's 'tapestry' controls its growth

Feb 05, 2009
A new theory suggests nanotubes are 'woven' from twisting carbon threads. Credit: Morteza Bankehsaz/Rice University

HOUSTON -- (Feb. 5, 2009) -- Rice University materials scientists have put a new "twist" on carbon nanotube growth. The researchers found the highly touted nanomaterials grow like tiny molecular tapestries, woven from twisting, single-atom threads.

Carbon nanotubes are hollow tubes of pure carbon that measure about one nanometer, or one-billionth of a meter, in diameter. In molecular diagrams, they look like rolled-up sheets of chicken wire. And just like a roll of wire or gift-wrapping paper, nanotubes can be rolled at an odd angle with excess hanging off the end.

Though nanotubes are much-studied, their growth is poorly understood. They grow by "self assembly," forming spontaneously from gaseous carbon feedstock under precise catalytic circumstances. The new research, which appears online this week in the Proceedings of the National Academy of Sciences, finds a direct relationship between a nanotube's "chiral" angle -- the amount it's twisted -- and how fast it grows.

"Our study offers some clues about this intimate 'self assembly' process," said Rice's Boris Yakobson, professor in mechanical engineering and materials science and of chemistry. New theory suggests that each tube is 'woven' from many twisting threads. Each grows independently, with new atoms attaching themselves to the exposed thread ends. The more threads there are, the faster the whole tapestry grows.

Yakobson, the lead researcher on the project, said the new formula's predictions have been borne out by a number of laboratory reports. For example, the formula predicts that nanotubes with the largest chiral angle will grow fastest because they have the most exposed threads -- something that's been shown in several experiments.

"Chirality is one of the primary determinants of a nanotube's properties," said Yakobson. "Our approach reveals quantitatively the role that chirality plays in growth, which is of great interest to all who hope to incorporate nanotubes into new technologies."

Source: Rice University

Explore further: Researchers make major advances in dye sensitized solar cells

add to favorites email to friend print save as pdf

Related Stories

Calcium carbonate templates for drug delivery

Jul 03, 2012

(Phys.org) -- The fast and targeted delivery of drugs to the focus of a disease could soon be made easier. Helmuth Möhwald and his colleagues from the Max Planck Institute of Colloids and Interfaces in ...

Nanotube growth theory experimentally confirmed

Jan 30, 2012

(PhysOrg.com) -- The Air Force Research Laboratory in Dayton, Ohio, has experimentally confirmed a theory by Rice University Professor Boris Yakobson that foretold a pair of interesting properties about nanotube ...

Taming carbon nanotubes

Feb 07, 2011

Carbon nanotubes have many attractive properties, and their structure and areas of application can be compared with those of graphene, the material for whose discovery the most recent Nobel Prize was awarded. In order to ...

Graphene may hold key to speeding up DNA sequencing

Sep 10, 2010

September 9, 2010 - In a paper published as the cover story of the September 9, 2010 Nature, researchers from Harvard University and MIT have demonstrated that graphene, a surprisingly robust planar sheet ...

Cars and Sprawl: Chicken or Egg?

May 27, 2010

(PhysOrg.com) -- It may have taken a major oil spill in the Gulf of Mexico to direct the general public's attention to automobile use and how it affects everything from the environment to obesity.

Recommended for you

Nanomaterial outsmarts ions

Apr 22, 2014

Ions are an essential tool in chip manufacturing, but these electrically charged atoms can also be used to produce nano-sieves with homogeneously distributed pores. A particularly large number of electrons, ...

User comments : 0

More news stories

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.