Researchers See Complex Atomic Choreography as Crystals Melt

Feb 02, 2009
A molecular dynamics simulation shows how non-surface melting begins and progresses inside a crystalline structure. (Image: Xian-Ming Bai)

(PhysOrg.com) -- Conga lines of atoms wend their way through a crystal, their numbers growing as more and more atoms join the migration. The worm-like lines of atoms randomly converge, forming tangles that evolve into droplets of liquid that signal the beginning of the complicated process known as melting.

That’s the picture painted by Georgia Tech researchers, who used molecular dynamics simulations to study how melting takes place deep within a perfect crystal. Reported in the April 2008 issue of the journal Physical Review B, the research offers a new and highly detailed look at a complex phenomenon that has intrigued theoreticians for nearly a century.

“Atoms start to vibrate, and then they find a buddy with the same vibration, attitude and direction,” explained Mo Li, a Georgia Tech School of Materials Science and Engineering professor who led the study. “They then start to move together and form this line that resembles a worm. When you generate a lot of worms in a crystalline system over time, they start to tangle. That’s when homogenous melting starts.”

Solid materials ordinarily melt when the combination of entropy and energy favors the liquid phase. Melting most often starts on the surface, or where crystalline defects and boundaries create weak bonds that allow vibrations to shake atoms loose from the structure.

But with the advent of material-cutting lasers that can heat crystalline materials from the inside - and with growing interest in high-pressure geothermal melting that also takes place from the inside - scientists needed to understand how non-surface melting happens.

It stands to reason that melting within a crystal would be very different from surface melting, Li points out. Atoms constrained within a perfect crystal have no place to go unless an adjacent atom moves to create a temporary opening in the crystalline structure. But if that happens, perhaps when one atom temporarily jumps into this vacant space, whole lines of atoms can begin to move in concert, each occupying the space vacated by its neighbor.

But observing that movement in detail hasn’t been easy.

Simulating the action of millions of atoms requires considerable computing time, so to minimize processor load, earlier simulations had raised the temperature of crystals rapidly, causing them to melt catastrophically. Li and his collaborator, former graduate student Xian-Ming Bai - now a postdoctoral fellow at Northwestern University - decided to slow the process down to observe what would happen with more realistic scenarios in which the temperature rises gradually over time.

“If you heat the atoms too quickly, they have no opportunity to explore low-energy configurations,” Li explained. “We wanted to slow down and look at how the thermodynamics works. We heated the material to a specific temperature and then held it for as long as we could to let the system evolve - like marinating meat for better flavor.”

Using a large computer cluster in Georgia Tech’s School of Materials Science and Engineering, the researchers studied what would happen to a crystal composed of several thousand argon atoms as it was heated. Argon was chosen because its physical behavior has been thoroughly studied. To form a continuous crystal without surfaces, the researchers mathematically joined the opposite faces of the simulated crystal.

Their patience was rewarded by a new and different view of the choreography behind this common phase transition. Beyond the basic scientific interest, those revelations could lead to a better understanding of materials processing.

“The results point toward some very interesting applications in controlling and manipulating melting,” says Li. “Since atoms don’t move individually, perhaps we can do something to change the behavior of this melting.”

At this point, Li doesn’t know if the dancing atoms observed in the simulated argon crystal are typical of melting in atomic crystals. He would like to study other systems, and expand the work to include more complex structures such as ceramics, metallic alloys, polymers and semiconducting materials such as silicon.

“Regardless of the structure, I believe the general principle of melting will be the coordinated motion of atoms or molecules,” he added. “Atoms and molecules are bound together in certain directions and they would have to move in certain directions. The consequence is that they will have to dance together.”

Ironically, the research into melting began with a study of how materials freeze, a project sponsored by the Defense Advanced Research Projects Agency (DARPA). Toward the end of that project, Li and his collaborators decided to reverse the process to see what would happen to the crystals they had created.

“This gives us a reference point for understanding what is really happening in nature,” he says. “There are still a lot of open questions, but no one really imagined that a mechanism like this existed.”

Provided by Georgia Institute of Technology

Explore further: New method for non-invasive prostate cancer screening

add to favorites email to friend print save as pdf

Related Stories

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

Lithium sulfur: A battery revolution on the cheap?

Jun 04, 2014

(Phys.org) —Whip together an industrial waste product and a bit of plastic and you might have the recipe for the next revolution in battery technology. Scientists from the National Institute of Standards ...

Recommended for you

New method for non-invasive prostate cancer screening

11 hours ago

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

How bubble studies benefit science and engineering

12 hours ago

The image above shows a perfect bubble imploding in weightlessness. This bubble, and many like it, are produced by the researchers from the École Polytechnique Fédérale de Lausanne in Switzerland. What ...

Famous Feynman lectures put online with free access

13 hours ago

(Phys.org) —Back in the early sixties, physicist Richard Feynman gave a series of lectures on physics to first year students at Caltech—those lectures were subsequently put into print and made into text ...

Single laser stops molecular tumbling motion instantly

17 hours ago

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern University scientists have figured out an elegant way to stop a molecule from ...

User comments : 0