Nanoscopic static electricity generates chiral patterns

Feb 02, 2009

In the tiny world of amino acids and proteins and in the helical shape of DNA, a biological phenomenon abounds.

These objects are all chiral — they cannot exactly superimpose their mirror image by translation or rotation. A common example of this is human hands — a right hand cannot superimpose itself into its mirror image, a left hand. This description of a molecule's symmetry (or lack thereof) is important in determining the molecule's properties in chemistry.

But while scientists and engineers know that at the sub-atomic level weak forces are chiral, how these electrostatic forces can generate a chiral world is still a mystery.

Researchers at Northwestern University in the group of Monica Olvera de la Cruz, professor of materials science and engineering and chemical and biological engineering at the McCormick School of Engineering and Applied Science, have recently shown how electrostatic interactions — commonly known as static electricity — alone can give rise to helical shapes. The group has constructed a mathematical model that can capture all possible regular shapes chiral objects could have, and they computed the preferred arrangements induced by electrostatic interactions.

Their work will be published as the cover story in the journal Soft Matter and is published online.

"In this way we are simply letting nature tell us how it would like to be, and we generalize it to many different systems," Olvera de la Cruz says." She and her colleagues report that chirality can only spontaneously arise as a consequence of electrostatic interactions and does not require the presence of other more complicated interactions, like dipolar or short-range van der Waals interactions.

Their model also describes arrangement of DNA mixed with carbon nanotubes. DNA has been shown to form helices around nanotubes, thereby separating the different types of carbon nanotubes into families.

The research findings concur with previous research using microscopy.

"From our predicted helical shapes of DNA wrapped around carbon nanotubes, we found amazing correspondence to those that were recently measured by atomic force microscopy," Olvera de le Cruz says.

The work shows that electrostatics is a pathway for understanding how nature generates helical symmetries. Researchers hope that future work can show how to use simple interactions to generate other symmetries that drive complex phenomena.

Source: Northwestern University

Explore further: Scientists convert microbubbles to nanoparticles

Related Stories

Catalyst redefines rate limitations in ammonia production

35 minutes ago

Studies by researchers at Tokyo Institute of Technology have developed a catalyst that is so effective at promoting dissociation of the nitrogen bond in ammonia production reactions that it is no longer the ...

3-D images of tiny objects down to 25 nanometres

37 minutes ago

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

Solar Impulse departs Myanmar for China

12 hours ago

Solar Impulse 2 took off from Myanmar's second biggest city of Mandalay early Monday and headed for China's Chongqing, the fifth flight of a landmark journey to circumnavigate the globe powered solely by ...

Recommended for you

Nanoparticles release drugs to reduce tooth decay

2 hours ago

Therapeutic agents intended to reduce dental plaque and prevent tooth decay are often removed by saliva and the act of swallowing before they can take effect. But a team of researchers has developed a way ...

Combining magnetism and light to fight cancer

7 hours ago

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire ...

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.