Shocking: Environmental chemistry affects ferroelectric film polarity the same way electric voltage does

Feb 02, 2009 By Miranda Marquit feature

(PhysOrg.com) -- “Ferroelectric materials are interesting scientifically, and, while they are used for some things now, they are potentially useful for even more applications in the future,” Brian Stephenson tells PhysOrg.com. Stephenson is a scientist at Argonne National Laboratory in Argonne, Illinois. He has been working on a project to study chemical switching in a ferroelectric film.

“Normally,” Stephenson continues, “voltage is applied to change the internal structure in ferroelectric materials. You can turn the crystal upside down from the internal point of view. We have shown, I think for the first time, that this can also be done chemically by changing the chemistry of the environment.” The results of the work, which includes scientists from Northern Illinois University and the University of Pennsylvania as well as Argonne, can be found in Physical Review Letters: “Reversible Chemical Switching of a Ferroelectric Film.”

In order to test the process of chemical switching by changing the environment of the ferroelectric film, Stephenson and his colleagues varied the oxygen partial pressure. In situ x-ray scattering was used to “see” the changes in the polarization of the material. The specific ferroelectric material used for the experiment was lead titanate (PbTiO3). The group found that changing the oxygen pressure switched the polarization of the PbTiO3 film in much the same way as the conventional practice of using electrodes and voltage.

The use of x-rays is important, since it allows scientists a peek at what is actually happening inside these materials. “The challenge has been to measure what is going on,” Stephenson admits. “With these thin films, external voltage measurements become more ambiguous. With our x-ray technique, we are able to watch the atomic-scale structure inside these systems.”

“Up until now,” he continues, “we didn’t really think that the environment these ferroelectric materials were in could be just as important as the voltage applied. Fundamentally, we didn’t realize that extra oxygen or missing oxygen at the surface could produce an electric field big enough to affect properties.”

This knowledge will become more important, Stephenson explains, as the demand for smaller devices made from new materials increases. Infrared and terahertz technology, controllable catalysts and chemistry applications on chips represent some of the areas that might benefit from a better knowledge of how switching works with PbTiO3 films.

“Already there are ferroelectric materials used for non-volatile computer memory devices,” Stephenson points out. “But the holy grail of these is a memory element the size of an atom. As films get thinner, understanding the interfacial properties of these materials makes a difference. If the chemistry of the environment can change the polarization, we need to harness this to create new types of devices.”

“The big picture is that we are trying to create new functional materials with interesting properties. We want to understand the way interfaces between different materials work. Ferroelectrics provide a model system where we can produce and measure large effects of the electric fields from the interfaces.”

Additional information: Wang, et. al. “Reversible Chemical Switching of a Ferroelectric Film.” Physical Review Letters (2008). Available online: link.aps.org/doi/10.1103/PhysRevLett.102.047601

Copyright 2009 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Superconducting circuits, simplified

add to favorites email to friend print save as pdf

Related Stories

Dispelling a misconception about Mg-ion batteries

Oct 16, 2014

Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices. However, for future automotive applications, we will need rechargeable batteries ...

Engineering new vehicle powertrains

Oct 01, 2014

Car engines – whether driven by gasoline, diesel, or electricity – waste an abundance of energy. Researchers are working on ways to stem this wastefulness. Ultramodern test facilities are helping them ...

Magnetic field opens and closes nanovesicle

Sep 24, 2014

Chemists and physicists of Radboud University managed to open and close nanovesicles using a magnet. This process is repeatable and can be controlled remotely, allowing targeted drug transport in the body, ...

Scientific instruments of Rosetta's Philae lander

Sep 23, 2014

When traveling to far off lands, one packs carefully. What you carry must be comprehensive but not so much that it is a burden. And once you arrive, you must be prepared to do something extraordinary to make ...

Recommended for you

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

KBK
1.8 / 5 (5) Feb 04, 2009
Alchemy has known these things for over 6,000 years.

Imagine what alchemists have handed down that you DON'T know.

Look deeper.
Joey_Tavares
3 / 5 (2) Feb 05, 2009
Hear Hear, KBK...