Some of Earth's climate troubles should face burial at sea, scientists say

Jan 28, 2009
Just past the continental shelf in the Gulf of Mexico -- the shelf is marked with the blue line -- a fan of sediment has formed on the seafloor made up of silt and debris that settles out of Mississippi River waters flowing into the gulf. These alluvial, or submarine, fans are found wherever rivers run into the ocean. Crop residues sunk in such fans would become covered with silt, further ensuring that carbon would be locked away for long periods. S. Strand/UW/U.S. Geological Survey

(PhysOrg.com) -- Making bales with 30 percent of global crop residues -- the stalks and such left after harvesting -- and then sinking the bales into the deep ocean could reduce the build up of global carbon dioxide in the atmosphere by up to 15 percent a year, according to just published calculations.

That is a significant amount of carbon, the process can be accomplished with existing technology and it can be done year after year, according to Stuart Strand, a University of Washington research professor. Further the technique would sequester -- or lock up -- the carbon in seafloor sediments and deep ocean waters for thousands of years, he says.

All these things cannot be said for other proposed solutions for taking carbon dioxide out of the atmosphere, methods such as ocean fertilization, growing new forests or using crop residues in other ways, says Strand, who is lead author of a paper on the subject in the journal Environmental Science & Technology, published by the American Chemical Society.

Strand has devised a formula to measure the carbon-sequestration efficiency of this process and others using crop residues, something no one has done before.

Carefully tallying how much carbon would be released during the harvest, transportation and sinking of 30 percent of U.S. crop residues and comparing that to how much carbon could be sequestered, Strand says the process would be 92 percent efficient. That's more efficient than any other use of crop residue he considered, including simply leaving crop residue in the field, which is 14 percent efficient at sequestering carbon, or using crop residue to produce ethanol, which avoids the use fossil fuels, but is only 32 percent efficient.

Worldwide, farming is mankind's largest-scale activity. Thirty percent of the world's crop residue represents 600 megatons of carbon that, if sequestered in the deep ocean with 92 percent efficiency, would mean the amount of carbon dioxide in the atmosphere would be reduced from 4,000 megatons of carbon to 3,400 megatons annually, Strand says. That's about a 15 percent decrease.

The proposed process would remove only above-ground residue. Strand bases his calculations on using 30 percent of crop residue because that's what agricultural scientists say could sustainably be removed, the rest being needed to maintain carbon in the soil. Crop residue would be baled with existing equipment and transported by trucks, barges or trains to ports, just as crops are. The bales would be barged to where the ocean is 1,500 meters, or nearly a mile, deep and then the bales would be weighted with rock and sunk.

"The ocean waters below 1,500 meters do not mix significantly with the upper waters," Strand says. "In the deep ocean it is cold, oxygen is limited and there are few marine organisms that can break down crop residue. That means what is put there will stay there for thousands of years."

The article calls for research on the environmental effects of sinking crop residues in the ocean, effects that most likely will be borne by organisms living in the ocean sediments where the bales fall.

Strand says one way to minimize environmental effects would be to drop the residue onto alluvial fans found off the continental shelf wherever rivers pour into the ocean. Alluvial fans, sometimes call submarine fans when underwater, form as silt and debris from river water settles to the seafloor. Runoff from current agricultural fields means alluvial fans in the ocean are already partly made up of crop residue. Any bales dumped there would quickly be covered with silt, further ensuring the carbon would be sequestered for long periods.

Effects might also be minimized by concentrating the residue in a compact area. At the Mississippi alluvial fan in the Gulf of Mexico, spreading 30 percent of U.S. crop residue in an annual layer 4 meters, or 13 feet, deep would cover 260 square kilometers, or 100 square miles. That's about 0.02 percent of the area of the Gulf of Mexico, Strand says.

"Whatever the environmental impacts of sinking crop residue in the oceans turn out to be, they will need to be viewed in light of the damage to oceans because of acidification and global warming if we don't remove carbon dioxide from the atmosphere," Strand says.

Co-author of the paper is Gregory Benford, a professor of physics at the University of California, Irvine.

Strand, a faculty member with the UW's College of Forest Resources, is an environmental engineer known for his work on using plants to remediate contaminated groundwater, soil and sediment. He said he's been interested in ways to remove carbon dioxide from the atmosphere for nearly a decade and first read about sequestering crop residue in the deep ocean in Climatic Science in 2001. Benford was a co-author on that paper.

Strand says he thinks any method for removing excess carbon dioxide must do seven things: move hundreds of megatons of carbon, sequester that carbon for thousands of years, be repeatable for centuries, be something that can be implemented immediately using methods already at hand, not cause unacceptable environmental damage and be economical. He says sequestering crop residue in the deep ocean fits the criteria better than any other proposed solution.

"To help save the upper ocean and continental ecosystems from severe disruption by climate change, we must not only stop our dependence on fossil fuels, but also go carbon negative," Strand says. "Fossil fuels that are removed from sediments and burned are producing the increased atmospheric carbon that is driving climate warming. Sequestering crop residue biomass in the deep ocean is essentially recycling atmospheric carbon back into deep sediments."

Provided by University of Washington

Explore further: Measuring the height of the world's forests

add to favorites email to friend print save as pdf

Related Stories

Black carbon is ancient by the time it reaches seafloor

Apr 08, 2014

(Phys.org) —A fraction of the carbon that finds its way into Earth's oceans—the black soot and charcoal residue of fires—stays there for thousands for years, and a new first-of-its-kind analysis shows ...

Burying crop residues at sea may help reduce global warming

Feb 02, 2009

Imagine a massive international effort to combat global warming by reducing carbon dioxide - build up in the atmosphere. It involves gathering billions of tons of cornstalks, wheat straw, and other crop residue from farm ...

Recommended for you

Measuring the height of the world's forests

1 hour ago

If we know the height of the world's forests, then we can estimate how much carbon they store. That will improve our understanding of how forests interact with the atmosphere and their role in mitigating ...

Scientists probe leak risk from seabed CO2 stores

1 hour ago

A UK-led international research team has carried out the first experiment to recreate what would happen if CO2 started leaking after being stored deep under the sea floor. Their findings add weight to the ide ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

GrayMouser
3 / 5 (6) Jan 28, 2009
Let's pollute the oceans with organic matter...

Right!
NeilFarbstein
3.7 / 5 (7) Jan 28, 2009
very wasteful of fertilizer. Over the decades it will deplete the soil making it worthless. There are several methods of making ethanol, methane and bio diesel from crop residues, they will recycle carbon dioxide, it may even become a cheap way of fueling trucks.
LuckyBrandon
3.4 / 5 (5) Jan 29, 2009
i agreee with the lets pollute the oceans more comment...this is just a plain stupid idea to me. dumping that much crap into the ocean, and expecting it to not have a lasting effect, like say, changing the currents in the water masses this is done in...that could end up a big a** problem that we are not able to deal with yet.
DGBEACH
5 / 5 (1) Jan 29, 2009
They have made no mention of the Phosphor contained in these materials from the heavy fertilization needed to grow these crops on nutrient-depleted land. Just a little can increase algae blooms, imagine millions of tons of material soaked in it...it'll be a real disaster!
Velanarris
5 / 5 (1) Jan 31, 2009
The real disaster will be when these residues rot under the ocean and force the oxygen out of the water causing apoxia for wildlife and damaging the food chain irreverably.