Researchers See the 'Dark Side' of the Sun

Jan 26, 2009
NASA Sees the 'Dark Side' of the Sun
An artist's concept of one of the STEREO spacecraft.

Today, NASA researchers announced an event that will transform our view of the Sun and, in the process, super-charge the field of solar physics for many years to come.

On February 6, 2011," says Chris St. Cyr of the Goddard Space Flight Center, "Super Bowl XLV will be played in Arlington, Texas."

Wait … that's not it.

"And on the same day," he adds, "NASA's two STEREO spacecraft will be 180 degrees apart and will image the entire Sun for the first time in history."

STEREO's deployment on opposite sides of the Sun solves a problem that has vexed astronomers for centuries: At any given moment they can see only half of the stellar surface. The Sun spins on its axis once every 25 days, so over the course of a month the whole Sun does turn to face Earth, but a month is not nearly fast enough to keep track of events. Sunspots can materialize, explode, and regroup in a matter of days; coronal holes open and close; magnetic filaments stretch tight and—snap!—they explode, hurling clouds of hot gas into the solar system. Fully half of this action is hidden from view, a fact which places space weather forecasters in an awkward position. How can you anticipate storms when you can't see them coming? Likewise researchers cannot track the long-term evolution of sunspots or the dynamics of magnetic filaments because they keep ducking over the horizon at inconvenient times. STEREO's global view will put an end to these difficulties.

The global view is still two years away. Already, however, the two spacecraft are beaming back over-the-horizon images that have researchers and forecasters glued to their monitors.

"This is a perspective we've never had before," says STEREO mission scientist Lika Guhathakurta of NASA headquarters. "We're now monitoring more than 270 degrees of solar longitude—that's 3/4ths of the star."

"After all these years," she laughs, "we're finally getting to see the dark side of the Sun."

(Note: The Sun has no dark side. That was a solar physics joke.)

STEREO's journey to the "dark side" began on Oct. 25, 2006, when the twin probes left Earth together onboard a Delta II rocket. High above the atmosphere, they separated and headed for the Moon. What happened next was a first in space navigation. The Moon acted as a gravitational slingshot, flinging the two probes in opposite directions—STEREO-A ahead of Earth and STEREO-B behind. They've been spreading apart ever since, and this is where they are now:

The current positions of the STEREO Ahead (red) and Behind (green) spacecraft relative to the Sun (orange) and Earth (blue). The dotted lines show the angular displacement from the Earth.

Because of the way the Sun spins (counterclockwise in the diagram above), STEREO-B gets a sneak preview of sunspots and coronal holes before they turn to face Earth—a boon for forecasters.

"I know forecasters at NOAA's Space Weather Prediction Center monitor STEREO-B very closely," says St Cyr. "It lets them know what's coming."

At the moment, STEREO-B enjoys a 3-day look-ahead advantage over Earth-based observatories. This has allowed researchers to predict geomagnetic storms as much as 72 hours earlier than ever before. On several occasions in late 2008, STEREO-B spotted a coronal hole spewing solar wind before any other spacecraft did. When the solar wind hit Earth, STEREO-B's long-range forecast was validated by auroras like these:

Photographer Brian Whittaker took this picture from the window of an airplane flying over Greenland on Nov. 9, 2008. The auroras were sparked by a solar wind impact anticipated by STEREO-B. Credit: Spaceweather.com.

St. Cyr notes that experienced ham radio operators can participate in this historic mission by helping NASA capture STEREO's images. The busy Deep Space Network downloads data from STEREO only three hours a day. That's plenty of time to capture all of the previous day's data, but NASA would like to monitor the transmissions around the clock.

"So we're putting together a 'mini-Deep Space Network' to stay in constant contact with STEREO," says Bill Thompson, director of the STEREO Science Center at Goddard.

The two spacecraft beam their data back to Earth via an X-band radio beacon. Anyone with a 10-meter dish antenna and a suitable receiver can pick up the signals. The data rate is low, 500 bits per second, and it takes 3 to 5 minutes to download a complete image.

So far, the mini-Network includes stations in the United Kingdom, France and Japan—and Thompson is looking for more: "NASA encourages people with X-band antennas to contact the STEREO team. We would gladly work with them and figure out how they can join our network."

The two STEREO spacecraft rank among most sophisticated solar observatories launched by NASA to date. They are equipped with sensors that measure the speed, direction and composition of the solar wind; receivers that pick up radio emissions from explosions and shock waves in the sun's atmosphere; telescopes that image the solar surface and all the tempests that rage there; and coronagraphs to monitor events in the sun's outer atmosphere.

"So, really," says Guhathakurta, "we're not only seeing the sun's dark side, we're feeling, tasting and listening to it as well."

Super Bowl Sunday may never be the same...

Source: by Dr. Tony Phillips, Science@NASA

Explore further: After Rosetta, Japanese mission aims for an asteroid in search of origins of Earth's water

add to favorites email to friend print save as pdf

Related Stories

Clues revealed about hidden interior of Uranus

Nov 14, 2014

(Phys.org) —Long believed to be one of the blandest regions of any of the giant gas planets, the southern hemisphere of Uranus indicates a flurry of previously unknown atmospheric phenomena, hinting at ...

Under Rainier's crater, a natural laboratory like no other

Oct 03, 2014

Counting all the ups and downs, he had climbed more than 15,000 feet to get here - past yawning crevasses and over cliffs where a single misstep could send a rope team tumbling. His party was pummeled by a lightning storm ...

Image: A cosmic hurricane

Sep 23, 2014

The giant planet Saturn is mostly a gigantic ball of rotating gas, completely unlike our solid home planet. But Earth and Saturn do have something in common: weather, although the gas giant is home to some ...

Recommended for you

SDO captures images of two mid-level flares

2 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

9 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

11 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

11 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

12 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.