Physicists resolve a paradox of quantum theory

Jan 14, 2009

University of Toronto quantum physicists Jeff Lundeen and Aephraim Steinberg have shown that Hardy's paradox, a proposal that has confounded physicists for over a decade, can be confirmed and ultimately resolved, a task which had seemingly been impossible to perform.

"For nearly a century, the widespread interpretation of quantum mechanics suggests that everything is uncertain until it is observed, and that observation inevitably alters reality," says Professor Steinberg. "However, in the 1990s, a technique known as 'interaction-free measurement' seemed to promise the ability to 'see without looking,' as a Scientific American article put it at the time. But when Lucien Hardy proposed that one could never reliably make inferences about past events which hadn't been directly observed, a paradox emerged which suggested that whenever one attempted to reason about the past in this way they would be led into error."

Over the course of nearly two years of work, Steinberg and then-student Jeff Lundeen, now a research associate at the National Research Council of Canada, built a complicated quantum optical experiment and developed new theoretical tools. In essence, they combined Hardy's Paradox with a new theory known as weak measurement proposed by Tel Aviv University physicist Yakir Aharonov, showing that in one sense, one can indeed talk about the past, resolving the paradox. Weak measurement is a tool whereby the presence of a detector is less than the level of uncertainty around what is being measured, so that there is an imperceptible impact on the experiment. "We found that all of the seemingly paradoxical conclusions in Hardy's Paradox can, in fact, be experimentally verified," says Steinberg, "but that the use of weak measurement removes the contradiction."

"Until recently, it seemed impossible to carry out Hardy's proposal in practice, let alone to confirm or resolve the paradox," he says. "We have finally been able to do so, and to apply Aharonov's methods to the problem, showing that there is a way, even in quantum mechanics, in which one can quite consistently discuss past events even after they are over and done. Weak measurement finds what is there without disturbing it."

The findings are published online today in an article titled "Experimental Joint Weak Measurement on a Photon Pair as a Probe of Hardy's Paradox" in the January 16 issue of the Physical Review of Letters at link.aps.org/abstract/PRL/v102/e020404 .

Source: University of Toronto

Explore further: Information storage for the next generation of plastic computers

add to favorites email to friend print save as pdf

Related Stories

Politics is driving fish stocks to collapse

Nov 15, 2011

Stocks of fish like cod and herring are likely to collapse within 40 years if European fisheries ministers continue to ignore scientific recommendations on how much fish should be caught each year, warn researchers.

Recommended for you

How to test the twin paradox without using a spaceship

16 hours ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

podizzle
3.5 / 5 (2) Jan 14, 2009
wow this time machine prototype is taking forever. (posted from the future with my weak measurement computer)
Pointedly
4.2 / 5 (6) Jan 14, 2009
Hey, podizzle. I thought I felt that I was being weakly measured...but I was uncertain.
el_gramador
not rated yet Jan 15, 2009
Okay guys enough with the puns, we don't want to hit another heisenberg.
Alexa
5 / 5 (1) Jan 24, 2009
By AWT the particles of reality are formed by nested density fluctuations of hypothetical particle field, so called an Aether. The measurement mean, the surface undulations of particles will get synchronized with those of observer (i.e. entangled), so that the relative component of mutual motion dissapears (collapse of wave function).

The weak measurement would mean, only undulations on certain level of nested density fluctuations will get synchronized.

For example, it's quite probable, if we succeede in particle localization by it's own gravity field at distance, such subtle observation wouldn't affect the actual particle spin or other basic properties at all, which would allow deterministic intepretation of quantum mechanics - at least up to certain level.

Was such explanation clear for you?

More news stories

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...