New tool gives researchers a glimpse of biomolecules in motion

Jan 13, 2009

The ability of biomolecules to flex and bend is important for the performance of many functions within living cells. However, researchers interested in how biomolecules such as amino acids and proteins function have long had to make inferences from a series of X-ray-like “still pictures” of pure crystalline samples.

Now, using a new technique based on terahertz (THz) spectroscopy, scientists at the National Institute of Standards and Technology (NIST) have recently taken the first step toward revealing the hidden machinations of biomolecules in water.*

With wavelengths that range from 1 millimeter to 25 micrometers, terahertz radiation falls between the infrared and microwave spectral regions. Researchers can determine how molecules are moving by passing terahertz radiation through a sample and measuring which wavelengths are absorbed. Unfortunately, room temperature water, the medium in which biological molecules typically are studied, absorbs nearly all of the terahertz radiation, limiting the utility of terahertz spectroscopy for probing biomolecular function.

To avoid the water problem, the NIST team needed to find a way to provide a simple but realistic environment for the biomolecules that contained the least amount of water possible. NIST researcher Ted Heilweil, National Research Council postdoctoral fellow Catherine Cooksey and NIST Summer Undergraduate Research Fellow Ben Greer from Carnegie Mellon University found their solution in the form of nanoscale droplets made of soap-like molecules called micelles.

Using the micelles as tiny test tubes, the team filled the hollow molecules with a small sample of water and the amino acid L-proline, a protein building block. Measurements validated their hypothesis that the micelles would provide an aqueous environment that allows the amino acid to flex and bend while limiting the absorption of the terahertz radiation by water. The terahertz measurements on this simple biomolecule compared well with expectations from other studies, further validating the technique.

According to Heilweil, this study is an important first step toward using terahertz radiation for studying biomolecules. More ambitious measurements on larger molecules such as small peptides, proteins, and DNA fragments will be more challenging, but he says it may be possible in the near future.

“If we can get larger molecules in [the micelles], we can get a much better idea of how living molecules function,” Heilweil said. “This will let us see the basic, most fundamental building blocks of life as they move, which is very exciting.”

* C. Cooksey, B. J. Greer and E. J. Heilweil. Terahertz spectroscopy of l-proline in reverse aqueous micelles. Chemical Physics Letters. Available online Nov. 21, 2008.

Source: National Institute of Standards and Technology

Explore further: Neutron tomography technique reveals phase fractions of crystalline materials in 3-dimensions

add to favorites email to friend print save as pdf

Related Stories

Affirmative action elicits bias in pro-equality Caucasians

13 minutes ago

New research from Simon Fraser University's Beedie School of Business indicates that bias towards the effects of affirmative action exists in not only people opposed to it, but also in those who strongly endorse equality.

Economical and agile offshore construction ship

23 minutes ago

Siemens is currently installing the power supply and propulsion systems into a new multi-purpose offshore construction ship for Toisa Ltd. The ship, which is being built by the Korean company Hyundai Heavy ...

Rising temperatures can be hard on dogs

3 minutes ago

The "dog days of summer" are here, but don't let the phrase fool you. This hot time of year can be dangerous for your pup, says a Kansas State University veterinarian.

Recommended for you

50-foot-wide Muon g-2 electromagnet installed at Fermilab

17 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

Spin-based electronics: New material successfully tested

Jul 30, 2014

Spintronics is an emerging field of electronics, where devices work by manipulating the spin of electrons rather than the current generated by their motion. This field can offer significant advantages to computer technology. ...

User comments : 0